Skip to main content

All-Electrical Scheme for Hall Viscosity Measurement

  • Chapter
  • First Online:
Many-body Approaches at Different Scales

Abstract

In highly viscous electron systems such as, for example, high quality graphene above liquid nitrogen temperature, a linear response to applied electric current becomes essentially nonlocal, which can give rise to a number of new and counterintuitive phenomena including negative nonlocal resistance and current whirlpools [1]. Moreover, in a fluid subject to a magnetic field the viscous stress tensor has a dissipationless antisymmetric component controlled by the so-called Hall viscosity. We propose an all-electrical scheme that allows a determination of the Hall viscosity of a two-dimensional electron liquid in a solid-state device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.J.W. Moll, P. Kushwaha, N. Nandi, B. Schmidt, A.P. Mackenzie, Science 351(6277), 1061 (2016). https://doi.org/10.1126/science.aac8385

  2. M. Mendoza, H.J. Herrmann, S. Succi, Phys. Rev. Lett. 106, 156601 (2011). https://doi.org/10.1103/PhysRevLett.106.156601

  3. M.J.M. de Jong, L.W. Molenkamp, Phys. Rev. B 51, 13389 (1995). https://doi.org/10.1103/PhysRevB.51.13389

  4. L.D. Landau, E.M. Lifshitz, Fluid mechanics, Course of theoretical physics, vol. 6 (Pergamon, New York, 1987). ISBN 9780080339337

    Google Scholar 

  5. U. Briskot, M. Schütt, I.V. Gornyi, M. Titov, B.N. Narozhny, A.D. Mirlin, Phys. Rev. B 92, 115426 (2015). https://doi.org/10.1103/PhysRevB.92.115426

  6. M.I. Dyakonov, M.S. Shur, Phys. Rev. B 51, 14341 (1995). https://doi.org/10.1103/PhysRevB.51.14341

  7. L. Levitov, G. Falkovich, Nat. Phys. 12(7), 672 (2016). https://doi.org/10.1038/nphys3667

  8. A. Lucas, J. Crossno, K.C. Fong, P. Kim, S. Sachdev, Phys. Rev. B 93, 075426 (2016). https://doi.org/10.1103/PhysRevB.93.075426

  9. M. Mendoza, H.J. Herrmann, S. Succi, 3, 1052 EP (2013). https://doi.org/10.1038/srep01052

  10. M. Müller, S. Sachdev, Phys. Rev. B 78, 115419 (2008). https://doi.org/10.1103/PhysRevB.78.115419

  11. B.N. Narozhny, I.V. Gornyi, M. Titov, M. Schütt, A.D. Mirlin, Phys. Rev. B 91, 035414 (2015). https://doi.org/10.1103/PhysRevB.91.035414

  12. D. Svintsov, V. Vyurkov, S. Yurchenko, T. Otsuji, V. Ryzhii, J. Appl. Phys. 111(8), 083715 (2012). https://doi.org/10.1063/1.4705382

  13. L.W. Molenkamp, M.J.M. de Jong, Solid-State Electron. 37(4), 551 (1994). https://doi.org/10.1016/0038-1101(94)90244-5

  14. V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, A.H. Castro Neto, Rev. Mod. Phys. 84, 1067 (2012). https://doi.org/10.1103/RevModPhys.84.1067

  15. J. Crossno, J.K. Shi, K. Wang, X. Liu, A. Harzheim, A. Lucas, S. Sachdev, P. Kim, T. Taniguchi, K. Watanabe, T.A. Ohki, K.C. Fong, Science 351(6277), 1058 (2016). https://doi.org/10.1126/science.aad0343

  16. T. Schäfer, D. Teaney, Rep. Prog. Phys. 72(12), 126001 (2009). https://doi.org/10.1088/0034-4885/72/12/126001

  17. M. Polini, G. Vignale, in No-Nonsense Physicist: An Overview of Gabriele Giuliani’s Work and Life, ed. by M. Polini, G. Vignale, V. Pellegrini, J.K. Jain (Scuola Normale Superiore, Pisa, 2016), pp. 107–124, arXiv:1404.5728 [cond-mat.mes-hall], https://doi.org/10.1007/978-88-7642-536-3_9

  18. A. Principi, G. Vignale, M. Carrega, M. Polini, Phys. Rev. B 93, 125410 (2016). https://doi.org/10.1103/PhysRevB.93.125410

  19. D.A. Bandurin, I. Torre, R.K. Kumar, M. Ben Shalom, A. Tomadin, A. Principi, G.H. Auton, E. Khestanova, K.S. Novoselov, I.V. Grigorieva, L.A. Ponomarenko, A.K. Geim, M. Polini, Science 351(6277), 1055 (2016). https://doi.org/10.1126/science.aad0201

  20. N. Read, E.H. Rezayi, Phys. Rev. B 84, 085316 (2011). https://doi.org/10.1103/PhysRevB.84.085316

  21. I.V. Tokatly, G. Vignale, Phys. Rev. B 76, 161305 (2007). https://doi.org/10.1103/PhysRevB.76.161305

  22. I.V. Tokatly, G. Vignale, J. Phys. Condens. Matter 21(27), 275603 (2009). https://doi.org/10.1088/0953-8984/21/27/275603

  23. D.A. Abanin, S.V. Morozov, L.A. Ponomarenko, R.V. Gorbachev, A.S. Mayorov, M.I. Katsnelson, K. Watanabe, T. Taniguchi, K.S. Novoselov, L.S. Levitov, A.K. Geim, Science 332(6027), 328 (2011). https://doi.org/10.1126/science.1199595

  24. R. Krishna Kumar, D.A. Bandurin, F.M.D. Pellegrino, Y. Cao, A. Principi, H. Guo, G.H. Auton, M. Ben Shalom, L.A. Ponomarenko, G. Falkovich, K. Watanabe, T. Taniguchi, I.V. Grigorieva, L.S. Levitov, M. Polini, A.K. Geim, Nat. Phys. advance online publication (2017). https://doi.org/10.1038/nphys4240

  25. R.N. Gurzhi, Sov. Phys. Uspekhi 11(2), 255 (1968). https://doi.org/10.1070/PU1968v011n02ABEH003815

  26. S. Das Sarma, S. Adam, E.H. Hwang, E. Rossi, Rev. Mod. Phys. 83(2), 407 (2011). https://doi.org/10.1103/RevModPhys.83.407

  27. M. Müller, J. Schmalian, L. Fritz, Phys. Rev. Lett. 103, 025301 (2009). https://doi.org/10.1103/PhysRevLett.103.025301

  28. I. Torre, A. Tomadin, A.K. Geim, M. Polini, Phys. Rev. B 92, 165433 (2015). https://doi.org/10.1103/PhysRevB.92.165433

  29. L. Fritz, J. Schmalian, M. Müller, S. Sachdev, Phys. Rev. B 78, 085416 (2008). https://doi.org/10.1103/PhysRevB.78.085416

  30. C. Hoyos, D.T. Son, Phys. Rev. Lett. 108, 066805 (2012). https://doi.org/10.1103/PhysRevLett.108.066805

  31. A.O. Govorov, J.J. Heremans, Phys. Rev. Lett. 92, 026803 (2004). https://doi.org/10.1103/PhysRevLett.92.026803

  32. A.K. Geim, K.S. Novoselov, Nat. Mater. 6(3), 183 (2007). https://doi.org/10.1038/nmat1849

  33. P.S. Alekseev, Phys. Rev. Lett. 117, 166601 (2016). https://doi.org/10.1103/PhysRevLett.117.166601

  34. J.E. Avron, R. Seiler, P.G. Zograf, Phys. Rev. Lett. 75, 697 (1995). https://doi.org/10.1103/PhysRevLett.75.697

  35. R. Bistritzer, A.H. MacDonald, Phys. Rev. B 80, 085109 (2009). https://doi.org/10.1103/PhysRevB.80.085109

  36. Q. Li, S. Das Sarma, Phys. Rev. B 87, 085406 (2013). https://doi.org/10.1103/PhysRevB.87.085406

  37. F.M.D. Pellegrino, I. Torre, M. Polini, (2017), to appear, arXiv:1706.08363 [cond-mat.mes-hall]

  38. G. Falkovich, Fluid Mechanics: A Short Course for Physicists (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  39. A.V. Andreev, S.A. Kivelson, B. Spivak, Phys. Rev. Lett. 106, 256804 (2011). https://doi.org/10.1103/PhysRevLett.106.256804

  40. M.I. Dyakonov, M.S. Shur, IEEE Trans. Electron Devices 43, 380 (1996). https://doi.org/10.1109/16.485650

  41. M. Dyakonov, M. Shur, Phys. Rev. Lett. 71, 2465 (1993). https://doi.org/10.1103/PhysRevLett.71.2465

  42. A. Tomadin, M. Polini, Phys. Rev. B 88, 205426 (2013). https://doi.org/10.1103/PhysRevB.88.205426

  43. A. Tomadin, G. Vignale, M. Polini, Phys. Rev. Lett. 113, 235901 (2014). https://doi.org/10.1103/PhysRevLett.113.235901

  44. B. Bradlyn, M. Goldstein, N. Read, Phys. Rev. B 86, 245309 (2012). https://doi.org/10.1103/PhysRevB.86.245309

  45. A. Cortijo, Y. Ferreirós, K. Landsteiner, M.A.H. Vozmediano, 2D Mater. 3(1), 011002 (2016). https://doi.org/10.1088/2053-1583/3/1/011002

  46. F.D.M. Haldane, Phys. Rev. Lett. 107, 116801 (2011). https://doi.org/10.1103/PhysRevLett.107.116801

  47. N. Read, Phys. Rev. B 79, 045308 (2009). https://doi.org/10.1103/PhysRevB.79.045308

  48. T. Scaffidi, N. Nandi, B. Schmidt, A.P. Mackenzie, J.E. Moore, Phys. Rev. Lett. 118, 226601 (2017). https://doi.org/10.1103/PhysRevLett.118.226601

  49. M. Sherafati, A. Principi, G. Vignale, Phys. Rev. B 94, 125427 (2016). https://doi.org/10.1103/PhysRevB.94.125427

  50. F.M.D. Pellegrino, I. Torre, A.K. Geim, M. Polini, Phys. Rev. B 94, 155414 (2016). https://doi.org/10.1103/PhysRevB.94.155414

  51. I. Torre, A. Tomadin, R. Krahne, V. Pellegrini, M. Polini, Phys. Rev. B 91, 081402 (2015). https://doi.org/10.1103/PhysRevB.91.081402

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. D. Pellegrino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pellegrino, F.M.D., Torre, I., Polini, M. (2018). All-Electrical Scheme for Hall Viscosity Measurement. In: Angilella, G., Amovilli, C. (eds) Many-body Approaches at Different Scales. Springer, Cham. https://doi.org/10.1007/978-3-319-72374-7_2

Download citation

Publish with us

Policies and ethics