Advertisement

All-Electrical Scheme for Hall Viscosity Measurement

  • F. M. D. Pellegrino
  • I. Torre
  • M. Polini
Chapter

Abstract

In highly viscous electron systems such as, for example, high quality graphene above liquid nitrogen temperature, a linear response to applied electric current becomes essentially nonlocal, which can give rise to a number of new and counterintuitive phenomena including negative nonlocal resistance and current whirlpools [1]. Moreover, in a fluid subject to a magnetic field the viscous stress tensor has a dissipationless antisymmetric component controlled by the so-called Hall viscosity. We propose an all-electrical scheme that allows a determination of the Hall viscosity of a two-dimensional electron liquid in a solid-state device.

References

  1. 1.
    P.J.W. Moll, P. Kushwaha, N. Nandi, B. Schmidt, A.P. Mackenzie, Science 351(6277), 1061 (2016).  https://doi.org/10.1126/science.aac8385
  2. 2.
    M. Mendoza, H.J. Herrmann, S. Succi, Phys. Rev. Lett. 106, 156601 (2011).  https://doi.org/10.1103/PhysRevLett.106.156601
  3. 3.
    M.J.M. de Jong, L.W. Molenkamp, Phys. Rev. B 51, 13389 (1995).  https://doi.org/10.1103/PhysRevB.51.13389
  4. 4.
    L.D. Landau, E.M. Lifshitz, Fluid mechanics, Course of theoretical physics, vol. 6 (Pergamon, New York, 1987). ISBN 9780080339337Google Scholar
  5. 5.
    U. Briskot, M. Schütt, I.V. Gornyi, M. Titov, B.N. Narozhny, A.D. Mirlin, Phys. Rev. B 92, 115426 (2015).  https://doi.org/10.1103/PhysRevB.92.115426
  6. 6.
    M.I. Dyakonov, M.S. Shur, Phys. Rev. B 51, 14341 (1995).  https://doi.org/10.1103/PhysRevB.51.14341
  7. 7.
    L. Levitov, G. Falkovich, Nat. Phys. 12(7), 672 (2016).  https://doi.org/10.1038/nphys3667
  8. 8.
    A. Lucas, J. Crossno, K.C. Fong, P. Kim, S. Sachdev, Phys. Rev. B 93, 075426 (2016).  https://doi.org/10.1103/PhysRevB.93.075426
  9. 9.
    M. Mendoza, H.J. Herrmann, S. Succi, 3, 1052 EP (2013).  https://doi.org/10.1038/srep01052
  10. 10.
    M. Müller, S. Sachdev, Phys. Rev. B 78, 115419 (2008).  https://doi.org/10.1103/PhysRevB.78.115419
  11. 11.
    B.N. Narozhny, I.V. Gornyi, M. Titov, M. Schütt, A.D. Mirlin, Phys. Rev. B 91, 035414 (2015).  https://doi.org/10.1103/PhysRevB.91.035414
  12. 12.
    D. Svintsov, V. Vyurkov, S. Yurchenko, T. Otsuji, V. Ryzhii, J. Appl. Phys. 111(8), 083715 (2012).  https://doi.org/10.1063/1.4705382
  13. 13.
    L.W. Molenkamp, M.J.M. de Jong, Solid-State Electron. 37(4), 551 (1994).  https://doi.org/10.1016/0038-1101(94)90244-5
  14. 14.
    V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, A.H. Castro Neto, Rev. Mod. Phys. 84, 1067 (2012).  https://doi.org/10.1103/RevModPhys.84.1067
  15. 15.
    J. Crossno, J.K. Shi, K. Wang, X. Liu, A. Harzheim, A. Lucas, S. Sachdev, P. Kim, T. Taniguchi, K. Watanabe, T.A. Ohki, K.C. Fong, Science 351(6277), 1058 (2016).  https://doi.org/10.1126/science.aad0343
  16. 16.
    T. Schäfer, D. Teaney, Rep. Prog. Phys. 72(12), 126001 (2009).  https://doi.org/10.1088/0034-4885/72/12/126001
  17. 17.
    M. Polini, G. Vignale, in No-Nonsense Physicist: An Overview of Gabriele Giuliani’s Work and Life, ed. by M. Polini, G. Vignale, V. Pellegrini, J.K. Jain (Scuola Normale Superiore, Pisa, 2016), pp. 107–124, arXiv:1404.5728 [cond-mat.mes-hall],  https://doi.org/10.1007/978-88-7642-536-3_9
  18. 18.
    A. Principi, G. Vignale, M. Carrega, M. Polini, Phys. Rev. B 93, 125410 (2016).  https://doi.org/10.1103/PhysRevB.93.125410
  19. 19.
    D.A. Bandurin, I. Torre, R.K. Kumar, M. Ben Shalom, A. Tomadin, A. Principi, G.H. Auton, E. Khestanova, K.S. Novoselov, I.V. Grigorieva, L.A. Ponomarenko, A.K. Geim, M. Polini, Science 351(6277), 1055 (2016).  https://doi.org/10.1126/science.aad0201
  20. 20.
    N. Read, E.H. Rezayi, Phys. Rev. B 84, 085316 (2011).  https://doi.org/10.1103/PhysRevB.84.085316
  21. 21.
    I.V. Tokatly, G. Vignale, Phys. Rev. B 76, 161305 (2007).  https://doi.org/10.1103/PhysRevB.76.161305
  22. 22.
    I.V. Tokatly, G. Vignale, J. Phys. Condens. Matter 21(27), 275603 (2009).  https://doi.org/10.1088/0953-8984/21/27/275603
  23. 23.
    D.A. Abanin, S.V. Morozov, L.A. Ponomarenko, R.V. Gorbachev, A.S. Mayorov, M.I. Katsnelson, K. Watanabe, T. Taniguchi, K.S. Novoselov, L.S. Levitov, A.K. Geim, Science 332(6027), 328 (2011).  https://doi.org/10.1126/science.1199595
  24. 24.
    R. Krishna Kumar, D.A. Bandurin, F.M.D. Pellegrino, Y. Cao, A. Principi, H. Guo, G.H. Auton, M. Ben Shalom, L.A. Ponomarenko, G. Falkovich, K. Watanabe, T. Taniguchi, I.V. Grigorieva, L.S. Levitov, M. Polini, A.K. Geim, Nat. Phys. advance online publication (2017).  https://doi.org/10.1038/nphys4240
  25. 25.
    R.N. Gurzhi, Sov. Phys. Uspekhi 11(2), 255 (1968).  https://doi.org/10.1070/PU1968v011n02ABEH003815
  26. 26.
    S. Das Sarma, S. Adam, E.H. Hwang, E. Rossi, Rev. Mod. Phys. 83(2), 407 (2011).  https://doi.org/10.1103/RevModPhys.83.407
  27. 27.
    M. Müller, J. Schmalian, L. Fritz, Phys. Rev. Lett. 103, 025301 (2009).  https://doi.org/10.1103/PhysRevLett.103.025301
  28. 28.
    I. Torre, A. Tomadin, A.K. Geim, M. Polini, Phys. Rev. B 92, 165433 (2015).  https://doi.org/10.1103/PhysRevB.92.165433
  29. 29.
    L. Fritz, J. Schmalian, M. Müller, S. Sachdev, Phys. Rev. B 78, 085416 (2008).  https://doi.org/10.1103/PhysRevB.78.085416
  30. 30.
    C. Hoyos, D.T. Son, Phys. Rev. Lett. 108, 066805 (2012).  https://doi.org/10.1103/PhysRevLett.108.066805
  31. 31.
    A.O. Govorov, J.J. Heremans, Phys. Rev. Lett. 92, 026803 (2004).  https://doi.org/10.1103/PhysRevLett.92.026803
  32. 32.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6(3), 183 (2007).  https://doi.org/10.1038/nmat1849
  33. 33.
    P.S. Alekseev, Phys. Rev. Lett. 117, 166601 (2016).  https://doi.org/10.1103/PhysRevLett.117.166601
  34. 34.
    J.E. Avron, R. Seiler, P.G. Zograf, Phys. Rev. Lett. 75, 697 (1995).  https://doi.org/10.1103/PhysRevLett.75.697
  35. 35.
    R. Bistritzer, A.H. MacDonald, Phys. Rev. B 80, 085109 (2009).  https://doi.org/10.1103/PhysRevB.80.085109
  36. 36.
    Q. Li, S. Das Sarma, Phys. Rev. B 87, 085406 (2013).  https://doi.org/10.1103/PhysRevB.87.085406
  37. 37.
    F.M.D. Pellegrino, I. Torre, M. Polini, (2017), to appear, arXiv:1706.08363 [cond-mat.mes-hall]
  38. 38.
    G. Falkovich, Fluid Mechanics: A Short Course for Physicists (Cambridge University Press, Cambridge, 2011)Google Scholar
  39. 39.
    A.V. Andreev, S.A. Kivelson, B. Spivak, Phys. Rev. Lett. 106, 256804 (2011).  https://doi.org/10.1103/PhysRevLett.106.256804
  40. 40.
    M.I. Dyakonov, M.S. Shur, IEEE Trans. Electron Devices 43, 380 (1996).  https://doi.org/10.1109/16.485650
  41. 41.
    M. Dyakonov, M. Shur, Phys. Rev. Lett. 71, 2465 (1993).  https://doi.org/10.1103/PhysRevLett.71.2465
  42. 42.
    A. Tomadin, M. Polini, Phys. Rev. B 88, 205426 (2013).  https://doi.org/10.1103/PhysRevB.88.205426
  43. 43.
    A. Tomadin, G. Vignale, M. Polini, Phys. Rev. Lett. 113, 235901 (2014).  https://doi.org/10.1103/PhysRevLett.113.235901
  44. 44.
    B. Bradlyn, M. Goldstein, N. Read, Phys. Rev. B 86, 245309 (2012).  https://doi.org/10.1103/PhysRevB.86.245309
  45. 45.
    A. Cortijo, Y. Ferreirós, K. Landsteiner, M.A.H. Vozmediano, 2D Mater. 3(1), 011002 (2016).  https://doi.org/10.1088/2053-1583/3/1/011002
  46. 46.
    F.D.M. Haldane, Phys. Rev. Lett. 107, 116801 (2011).  https://doi.org/10.1103/PhysRevLett.107.116801
  47. 47.
    N. Read, Phys. Rev. B 79, 045308 (2009).  https://doi.org/10.1103/PhysRevB.79.045308
  48. 48.
    T. Scaffidi, N. Nandi, B. Schmidt, A.P. Mackenzie, J.E. Moore, Phys. Rev. Lett. 118, 226601 (2017).  https://doi.org/10.1103/PhysRevLett.118.226601
  49. 49.
    M. Sherafati, A. Principi, G. Vignale, Phys. Rev. B 94, 125427 (2016).  https://doi.org/10.1103/PhysRevB.94.125427
  50. 50.
    F.M.D. Pellegrino, I. Torre, A.K. Geim, M. Polini, Phys. Rev. B 94, 155414 (2016).  https://doi.org/10.1103/PhysRevB.94.155414
  51. 51.
    I. Torre, A. Tomadin, R. Krahne, V. Pellegrini, M. Polini, Phys. Rev. B 91, 081402 (2015).  https://doi.org/10.1103/PhysRevB.91.081402

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.NESTIstituto Nanoscienze-CNRModenaItaly
  2. 2.Scuola Normale SuperiorePisaItaly
  3. 3.Graphene LabsIIT, Istituto Italiano di TecnologiaGenovaItaly

Personalised recommendations