Skip to main content

A Gradient Corrected Two-Point Weighted Density Approximation for Exchange Energies

  • Chapter
  • First Online:
Many-body Approaches at Different Scales
  • 856 Accesses

Abstract

A successful symmetric, two-point, nonlocal weighted density approximation for the exchange energy of atoms and molecules can be constructed using a power mean with constant power p when symmetrizing the exchange-correlation hole [Phys. Rev. A 85, 042519 (2012)]. In this work, we consider how this parameter depends on the system’s charge. Exchange energies for all ions with charge from \(-1\) to \(+12\) of the first eighteen atoms of the periodic table are computed and optimized. Appropriate gradient corrections to the current model, based on rational functions, are designed based on the optimal p values we observed for the ionic systems. All of the advantageous features (non-locality, uniform electron gas limit and no self-interaction error) of the original model are preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989). ISBN 9780195092769

    Google Scholar 

  2. P.W. Ayers, W. Yang, in ComputatiOnal Medicinal Chemistry for Drug Discovery, ed. by P. Bultinck, H. de Winter, W. Langenaeker, J.P. Tollenaere (Dekker, New York, 2003), pp. 571–616

    Google Scholar 

  3. W. Kohn, A.D. Becke, R.G. Parr, J. Phys. Chem. 100(31), 12974 (1996). https://doi.org/10.1021/jp960669l

  4. A.J. Cohen, P. Mori-Sánchez, W. Yang, Chem. Rev. 112(1), 289 (2012). https://doi.org/10.1021/cr200107z

  5. W. Kohn, Rev. Mod. Phys. 71, 1253 (1999). https://doi.org/10.1103/RevModPhys.71.1253

  6. P.C. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864

  7. M. Levy, Proc. Nat. Acad. Sci. 76(12), 6062 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  8. S.M. Valone, J. Chem. Phys. 73(9), 4653 (1980). https://doi.org/10.1063/1.440656

  9. E.H. Lieb, Int. J. Quantum Chem. 24(3), 243 (1983). https://doi.org/10.1002/qua.560240302

  10. W. Yang, P.W. Ayers, Q. Wu, Phys. Rev. Lett. 92, 146404 (2004). https://doi.org/10.1103/PhysRevLett.92.146404

  11. P.W. Ayers, Phys. Rev. A 73, 012513 (2006). https://doi.org/10.1103/PhysRevA.73.012513

  12. H. Eschrig, The Fundamentals of Density Functional Theory (Eagle, Leipzig, 2003)

    MATH  Google Scholar 

  13. A.J. Cohen, P. Mori-Sánchez, W. Yang, Science 321(5890), 792 (2008). https://doi.org/10.1126/science.1158722

  14. J.P. Perdew, A. Ruzsinszky, J. Tao, V.N. Staroverov, G.E. Scuseria, G.I. Csonka, J. Chem. Phys. 123(6), 062201 (2005). https://doi.org/10.1063/1.1904565

  15. M. Ernzerhof, J.P. Perdew, K. Burke, in Density Functional Theory I: Functionals and Effective Potentials, ed. by R.F. Nalewajski (Springer, Berlin, Heidelberg, 1996), pp. 1–30. https://doi.org/10.1007/3-540-61091-X_1. ISBN 978-3-540-49945-9

  16. J.P. Perdew, A. Ruzsinszky, L.A. Constantin, J. Sun, G.I. Csonka, J. Chem. Theory Comput. 5(4), 902 (2009). https://doi.org/10.1021/ct800531s

  17. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

  18. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58(8), 1200 (1980). https://doi.org/10.1139/p80-159

  19. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992). https://doi.org/10.1103/PhysRevB.45.13244

  20. J.P. Perdew, W. Yue, Phys. Rev. B 33, 8800 (1986). https://doi.org/10.1103/PhysRevB.33.8800

  21. A.D. Becke, Phys. Rev. A 38, 3098 (1988). https://doi.org/10.1103/PhysRevA.38.3098

  22. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996), [Erratum Phys. Rev. Lett. 78, 1396 (1997)]. https://doi.org/10.1103/PhysRevLett.77.3865

  23. N.C. Handy, A.J. Cohen, Mol. Phys. 99(5), 403 (2001). https://doi.org/10.1080/00268970010018431

  24. A. Savin, in Recent Developments of Modern Density Functional Theory, ed. by J.M. Seminario (Elsevier, New York, 1996), p. 327

    Chapter  Google Scholar 

  25. P.W. Ayers, M. Levy, J. Chem. Phys. 140(18), 18A537 (2014). https://doi.org/10.1063/1.4871732

  26. M. Levy, J.S.M. Anderson, F.H. Zadeh, P.W. Ayers, J. Chem. Phys. 140(18), 18A538 (2014). https://doi.org/10.1063/1.4871734

  27. P. Mori-Sánchez, A.J. Cohen, W. Yang, Phys. Rev. Lett. 102, 066403 (2009). https://doi.org/10.1103/PhysRevLett.102.066403

  28. A. Ruzsinszky, J.P. Perdew, G.I. Csonka, J. Chem. Phys. 134(11), 114110 (2011). https://doi.org/10.1063/1.3569483

  29. A. Ruzsinszky, J.P. Perdew, G.I. Csonka, J. Chem. Theory Comput. 6(1), 127 (2010). https://doi.org/10.1021/ct900518k

  30. A. Puzder, M. Dion, D.C. Langreth, J. Chem. Phys. 124(16), 164105 (2006). https://doi.org/10.1063/1.2189229

  31. T. Thonhauser, A. Puzder, D.C. Langreth, J. Chem. Phys. 124(16), 164106 (2006). https://doi.org/10.1063/1.2189230

  32. M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). https://doi.org/10.1103/PhysRevLett.92.246401

  33. O.A. Vydrov, T. Van Voorhis, J. Chem. Phys. 133(24), 244103 (2010). https://doi.org/10.1063/1.3521275

  34. O.A. Vydrov, T. Van Voorhis, J. Chem. Phys. 130(10), 104105 (2009). https://doi.org/10.1063/1.3079684

  35. O.A. Vydrov, T. Van Voorhis, Phys. Rev. Lett. 103, 063004 (2009). https://doi.org/10.1103/PhysRevLett.103.063004

  36. O.A. Vydrov, Q. Wu, T. Van Voorhis, J. Chem. Phys. 129(1), 014106 (2008). https://doi.org/10.1063/1.2948400

  37. B.I. Lundqvist, Y. Andersson, H. Shao, S. Chan, D.C. Langreth, Int. J. Quantum Chem. 56(4), 247 (1995). https://doi.org/10.1002/qua.560560410

  38. R. Cuevas-Saavedra, D. Chakraborty, S. Rabi, C. Cárdenas, P.W. Ayers, J. Chem. Theory Comput. 8(11), 4081 (2012). https://doi.org/10.1021/ct300325t

  39. R. Cuevas-Saavedra, D. Chakraborty, P.W. Ayers, Phys. Rev. A 85, 042519 (2012). https://doi.org/10.1103/PhysRevA.85.042519

  40. P.W. Ayers, R. Cuevas-Saavedra, D. Chakraborty, Phys. Lett. A 376(6), 839 (2012). https://doi.org/10.1016/j.physleta.2012.01.028

  41. R. Cuevas-Saavedra, D.C. Thompson, P.W. Ayers, Int. J. Quantum Chem. 116(11), 852 (2016). https://doi.org/10.1002/qua.25081

  42. R. Cuevas-Saavedra, P.W. Ayers, J. Phys. Chem. Solids 73(5), 670 (2012). https://doi.org/10.1016/j.jpcs.2012.01.004

  43. R. Cuevas-Saavedra, P.W. Ayers, Chem. Phys. Lett. 539, 163 (2012). https://doi.org/10.1016/j.cplett.2012.04.037

  44. H. Antaya, Y. Zhou, M. Ernzerhof, Phys. Rev. A 90, 032513 (2014). https://doi.org/10.1103/PhysRevA.90.032513

  45. C.E. Patrick, K.S. Thygesen, J. Chem. Phys. 143(10), 102802 (2015). https://doi.org/10.1063/1.4919236

  46. Y. Zhou, H. Bahmann, M. Ernzerhof, J. Chem. Phys. 143(12), 124103 (2015). https://doi.org/10.1063/1.4931160

  47. J.P. Přecechtělová, H. Bahmann, M. Kaupp, M. Ernzerhof, J. Chem. Phys. 143(14), 144102 (2015). https://doi.org/10.1063/1.4932074

  48. O.V. Gritsenko, B. Ensing, P.R.T. Schipper, E.J. Baerends, J. Phys. Chem. A 104(37), 8558 (2000). https://doi.org/10.1021/jp001061m

  49. Y. Zhang, W. Yang, J. Chem. Phys. 109(7), 2604 (1998). https://doi.org/10.1063/1.476859

  50. A. Savin, Chem. Phys. 356(1), 91 (2009), Moving Frontiers in Quantum Chemistry. https://doi.org/10.1016/j.chemphys.2008.10.023

  51. O. Gunnarsson, B.I. Lundqvist, Phys. Rev. B 13, 4274 (1976). https://doi.org/10.1103/PhysRevB.13.4274

  52. D.C. Langreth, J.P. Perdew, Phys. Rev. B 15, 2884 (1977). https://doi.org/10.1103/PhysRevB.15.2884

  53. M.S. Becker, Phys. Rev. 185, 168 (1969). https://doi.org/10.1103/PhysRev.185.168

  54. N.H. March, Phys. Chem. Liq. 46(5), 465 (2008). https://doi.org/10.1080/00319100802239503

  55. C. Amovilli, N.H. March, Phys. Rev. B 76, 195104 (2007). https://doi.org/10.1103/PhysRevB.76.195104

  56. R. Cuevas-Saavedra, P.W. Ayers, Int. J. Mod. Phys. B 24(25n26), 5115 (2010). https://doi.org/10.1142/S0217979210057250

  57. R. Cuevas-Saavedra, P.W. Ayers, Exchange-Correlation Functionals from the Identical-Particle Ornstein-Zernike Equation:. Basic Formulation and Numerical Algorithms (World Scientific, Singapore, 2012), vol. 25, pp. 237–249. https://doi.org/10.1142/9789814340793_0019. ISBN 9789814340793

  58. P. Gori-Giorgi, F. Sacchetti, G.B. Bachelet, Phys. Rev. B 61, 7353 (2000), [66, 159901(E) (2002)]. https://doi.org/10.1103/PhysRevB.61.7353

  59. P. Gori-Giorgi, J.P. Perdew, Phys. Rev. B 66, 165118 (2002). https://doi.org/10.1103/PhysRevB.66.165118

  60. D. Chakraborty, R. Cuevas-Saavedra, P.W. Ayers, in Many-Body Approaches at Different Scales: A Tribute to Norman H. March on the Occasion of His 90th Birthday, ed. by G.G.N. Angilella, C. Amovilli (Springer, New York, 2018), chap. 17, p. 199. (This volume.). https://doi.org/10.1007/978-3-319-72374-7_17

  61. J.P.A. Charlesworth, Phys. Rev. B 53, 12666 (1996). https://doi.org/10.1103/PhysRevB.53.12666

  62. P. García-González, J.E. Alvarellos, E. Chacón, P. Tarazona, Phys. Rev. B 62, 16063 (2000). https://doi.org/10.1103/PhysRevB.62.16063

Download references

Acknowledgements

Support from Compute Canada, NSERC, and the Canada Research Chairs is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. W. Ayers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuevas-Saavedra, R., Chakraborty, D., Chan, M., Ayers, P.W. (2018). A Gradient Corrected Two-Point Weighted Density Approximation for Exchange Energies. In: Angilella, G., Amovilli, C. (eds) Many-body Approaches at Different Scales. Springer, Cham. https://doi.org/10.1007/978-3-319-72374-7_18

Download citation

Publish with us

Policies and ethics