Skip to main content

Shannon Entropy and Correlation Energy for Electrons in Atoms

  • Chapter
  • First Online:
Many-body Approaches at Different Scales

Abstract

In this work, we compute Shannon entropy, defined in terms of electron density, for three series of atomic ions including the region of nuclear charges close to the limit at which the ionization potential goes to zero. We use both Hartree–Fock (HF) and quantum Monte Carlo (QMC) densities and we observe a sharp positive deviation of QMC entropy with respect to the HF corresponding value in approaching the limit. We discuss this behaviour taking into account Coulomb correlation, which plays an important role in the weak binding regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)

    MATH  Google Scholar 

  2. L. Landau, Z. Phys. 45(5), 430 (1927). https://doi.org/10.1007/BF01343064

  3. D. Janzing, in Compendium of quantum physics: concepts, experiments, history and philosophy, ed. by D. Greenberger, K. Hentschel, F. Weinert (Springer, Berlin, 2009), pp. 205–209

    Google Scholar 

  4. D.M. Collins, Z. Naturforsch. 48a, 68 (1993)

    Google Scholar 

  5. R.O. Esquivel, A.L. Rodríguez, R.P. Sagar, M. Hô, V.H. Smith, Phys. Rev. A 54, 259 (1996). https://doi.org/10.1103/PhysRevA.54.259

  6. P. Ziesche, Int. J. Quantum Chem. 56(4), 363 (1995). https://doi.org/10.1002/qua.560560422

  7. Á. Nagy, E. Romera, J. Mol. Model. 23(5), 159 (2017). https://doi.org/10.1007/s00894-017-3331-y

  8. S. Grimme, A. Hansen, Angew. Chem. Int. Ed. 54(42), 12308 (2015). https://doi.org/10.1002/anie.201501887

  9. C.E. Shannon, Bell Syst. Tech. J. 27(3), 379 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

  10. C.E. Shannon, Bell Syst. Tech. J. 27(4), 623 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb00917.x

  11. Á. Nagy, Chem. Phys. Lett. 556, 355 (2013). https://doi.org/10.1016/j.cplett.2012.11.065

  12. L. Delle Site, Int. J. Quantum Chem. 115(19), 1396 (2015). https://doi.org/10.1002/qua.24823

  13. M. Gell-Mann, K.A. Brueckner, Phys. Rev. 106, 364 (1957). https://doi.org/10.1103/hysRev.106.364

  14. S.P. Fazal, K.D. Sen, G. Gutierrez, P. Fuentealba, Indian J. Chem. A 39, 48 (2000)

    Google Scholar 

  15. C. Amovilli, N.H. March, Phys. Rev. A 69(5), 054302 (2004). https://doi.org/10.1103/PhysRevA.69.054302

  16. E.T. Jaynes, Phys. Rev. 108, 171 (1957). https://doi.org/10.1103/PhysRev.108.171

  17. W.M.C. Foulkes, L. Mitas, R.J. Needs, G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001). https://doi.org/10.1103/RevModPhys.73.33

  18. P.J. Reynolds, D.M. Ceperley, B.J. Alder, W.A. Lester Jr., J. Chem. Phys. 77(11), 5593 (1982). https://doi.org/10.1063/1.443766

  19. M. Burkatzki, C. Filippi, M. Dolg, J. Chem. Phys. 126(23), 234105 (2007). https://doi.org/10.1063/1.2741534

  20. C. Filippi, C.J. Umrigar, J. Chem. Phys. 105(1), 213 (1996). https://doi.org/10.1063/1.471865

  21. C.J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, R.G. Hennig, Phys. Rev. Lett. 98, 110201 (2007). https://doi.org/10.1103/PhysRevLett.98.110201

  22. M. Casula, Phys. Rev. B 74, 161102 (2006). https://doi.org/10.1103/PhysRevB.74.161102

  23. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comp. Chem. 14(11), 1347 (1993). https://doi.org/10.1002/jcc.540141112

  24. CHAMP is a quantum Monte Carlo program package written by C. J. Umrigar, C. Filippi and collaborators

    Google Scholar 

  25. C. Amovilli, N.H. March, I.A. Howard, Á. Nagy, Phys. Lett. A 372(22), 4053 (2008). https://doi.org/10.1016/j.physleta.2007.11.075

  26. G.W.F. Drake, R.A. Swainson, Phys. Rev. A 41, 1243 (1990). https://doi.org/10.1103/PhysRevA.41.1243

  27. C. Amovilli, N.H. March, J. Phys. A Math. Gen. 39(23), 7349 (2006). https://doi.org/10.1088/0305-4470/39/23/013

  28. J.H. Ou, Y.K. Ho, Atoms 5(2), 15 (2017). https://doi.org/10.3390/atoms5020015

  29. S. Kullback, R.A. Leibler, Ann. Math. Stat. 22(1), 79 (1951). https://doi.org/10.1214/aoms/1177729694

  30. H. Hogreve, J. Phys. B At. Mol. Phys. 31(10), L439 (1998). https://doi.org/10.1088/0953-4075/31/10/001

Download references

Acknowledgements

We thank Claudia Filippi for providing the version of CHAMP code under development at the University of Twente (NL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Amovilli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amovilli, C., Floris, F.M. (2018). Shannon Entropy and Correlation Energy for Electrons in Atoms. In: Angilella, G., Amovilli, C. (eds) Many-body Approaches at Different Scales. Springer, Cham. https://doi.org/10.1007/978-3-319-72374-7_16

Download citation

Publish with us

Policies and ethics