Shannon Entropy and Correlation Energy for Electrons in Atoms

Chapter

Abstract

In this work, we compute Shannon entropy, defined in terms of electron density, for three series of atomic ions including the region of nuclear charges close to the limit at which the ionization potential goes to zero. We use both Hartree–Fock (HF) and quantum Monte Carlo (QMC) densities and we observe a sharp positive deviation of QMC entropy with respect to the HF corresponding value in approaching the limit. We discuss this behaviour taking into account Coulomb correlation, which plays an important role in the weak binding regime.

Notes

Acknowledgements

We thank Claudia Filippi for providing the version of CHAMP code under development at the University of Twente (NL).

References

  1. 1.
    J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)MATHGoogle Scholar
  2. 2.
    L. Landau, Z. Phys. 45(5), 430 (1927).  https://doi.org/10.1007/BF01343064
  3. 3.
    D. Janzing, in Compendium of quantum physics: concepts, experiments, history and philosophy, ed. by D. Greenberger, K. Hentschel, F. Weinert (Springer, Berlin, 2009), pp. 205–209Google Scholar
  4. 4.
    D.M. Collins, Z. Naturforsch. 48a, 68 (1993)Google Scholar
  5. 5.
    R.O. Esquivel, A.L. Rodríguez, R.P. Sagar, M. Hô, V.H. Smith, Phys. Rev. A 54, 259 (1996).  https://doi.org/10.1103/PhysRevA.54.259
  6. 6.
    P. Ziesche, Int. J. Quantum Chem. 56(4), 363 (1995).  https://doi.org/10.1002/qua.560560422
  7. 7.
    Á. Nagy, E. Romera, J. Mol. Model. 23(5), 159 (2017).  https://doi.org/10.1007/s00894-017-3331-y
  8. 8.
    S. Grimme, A. Hansen, Angew. Chem. Int. Ed. 54(42), 12308 (2015).  https://doi.org/10.1002/anie.201501887
  9. 9.
    C.E. Shannon, Bell Syst. Tech. J. 27(3), 379 (1948).  https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  10. 10.
    C.E. Shannon, Bell Syst. Tech. J. 27(4), 623 (1948).  https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
  11. 11.
    Á. Nagy, Chem. Phys. Lett. 556, 355 (2013).  https://doi.org/10.1016/j.cplett.2012.11.065
  12. 12.
    L. Delle Site, Int. J. Quantum Chem. 115(19), 1396 (2015).  https://doi.org/10.1002/qua.24823
  13. 13.
    M. Gell-Mann, K.A. Brueckner, Phys. Rev. 106, 364 (1957).  https://doi.org/10.1103/hysRev.106.364
  14. 14.
    S.P. Fazal, K.D. Sen, G. Gutierrez, P. Fuentealba, Indian J. Chem. A 39, 48 (2000)Google Scholar
  15. 15.
    C. Amovilli, N.H. March, Phys. Rev. A 69(5), 054302 (2004).  https://doi.org/10.1103/PhysRevA.69.054302
  16. 16.
    E.T. Jaynes, Phys. Rev. 108, 171 (1957).  https://doi.org/10.1103/PhysRev.108.171
  17. 17.
    W.M.C. Foulkes, L. Mitas, R.J. Needs, G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001).  https://doi.org/10.1103/RevModPhys.73.33
  18. 18.
    P.J. Reynolds, D.M. Ceperley, B.J. Alder, W.A. Lester Jr., J. Chem. Phys. 77(11), 5593 (1982).  https://doi.org/10.1063/1.443766
  19. 19.
    M. Burkatzki, C. Filippi, M. Dolg, J. Chem. Phys. 126(23), 234105 (2007).  https://doi.org/10.1063/1.2741534
  20. 20.
    C. Filippi, C.J. Umrigar, J. Chem. Phys. 105(1), 213 (1996).  https://doi.org/10.1063/1.471865
  21. 21.
    C.J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, R.G. Hennig, Phys. Rev. Lett. 98, 110201 (2007).  https://doi.org/10.1103/PhysRevLett.98.110201
  22. 22.
    M. Casula, Phys. Rev. B 74, 161102 (2006).  https://doi.org/10.1103/PhysRevB.74.161102
  23. 23.
    M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comp. Chem. 14(11), 1347 (1993).  https://doi.org/10.1002/jcc.540141112
  24. 24.
    CHAMP is a quantum Monte Carlo program package written by C. J. Umrigar, C. Filippi and collaboratorsGoogle Scholar
  25. 25.
    C. Amovilli, N.H. March, I.A. Howard, Á. Nagy, Phys. Lett. A 372(22), 4053 (2008).  https://doi.org/10.1016/j.physleta.2007.11.075
  26. 26.
    G.W.F. Drake, R.A. Swainson, Phys. Rev. A 41, 1243 (1990).  https://doi.org/10.1103/PhysRevA.41.1243
  27. 27.
    C. Amovilli, N.H. March, J. Phys. A Math. Gen. 39(23), 7349 (2006).  https://doi.org/10.1088/0305-4470/39/23/013
  28. 28.
    J.H. Ou, Y.K. Ho, Atoms 5(2), 15 (2017).  https://doi.org/10.3390/atoms5020015
  29. 29.
    S. Kullback, R.A. Leibler, Ann. Math. Stat. 22(1), 79 (1951).  https://doi.org/10.1214/aoms/1177729694
  30. 30.
    H. Hogreve, J. Phys. B At. Mol. Phys. 31(10), L439 (1998).  https://doi.org/10.1088/0953-4075/31/10/001

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Chimica e Chimica IndustrialeUniversity of PisaPisaItaly

Personalised recommendations