Advertisement

Exceeding the Shockley–Queisser Limit Within the Detailed Balance Framework

  • M. Bercx
  • R. Saniz
  • B. Partoens
  • D. Lamoen
Chapter

Abstract

The Shockley–Queisser limit is one of the most fundamental results in the field of photovoltaics. Based on the principle of detailed balance, it defines an upper limit for a single junction solar cell that uses an absorber material with a specific band gap. Although methods exist that allow a solar cell to exceed the Shockley–Queisser limit, here we show that it is possible to exceed the Shockley–Queisser limit without considering any of these additions. Merely by introducing an absorptivity that does not assume that every photon with an energy above the band gap is absorbed, efficiencies above the Shockley–Queisser limit are obtained. This is related to the fact that assuming optimal absorption properties also maximizes the recombination current within the detailed balance approach. We conclude that considering a finite thickness for the absorber layer allows the efficiency to exceed the Shockley–Queisser limit, and that this is more likely to occur for materials with small band gaps.

References

  1. 1.
    W. Shockley, H.J. Queisser, J. Appl. Phys. 32(3), 510 (1961).  https://doi.org/10.1063/1.1736034
  2. 2.
    L. Yu, A. Zunger, Phys. Rev. Lett. 108, 068701 (2012).  https://doi.org/10.1103/PhysRevLett.108.068701
  3. 3.
    W. Meng, B. Saparov, F. Hong, J. Wang, D.B. Mitzi, Y. Yan, Chem. Mater. 28(3), 821 (2016).  https://doi.org/10.1021/acs.chemmater.5b04213
  4. 4.
    I.H. Lee, J. Lee, Y.J. Oh, S. Kim, K.J. Chang, Phys. Rev. B 90, 115209 (2014).  https://doi.org/10.1103/PhysRevB.90.115209
  5. 5.
    M. Bercx, N. Sarmadian, R. Saniz, B. Partoens, D. Lamoen, Phys. Chem. Chem. Phys. 18, 20542 (2016).  https://doi.org/10.1039/C6CP03468C
  6. 6.
    N. Sarmadian, R. Saniz, B. Partoens, D. Lamoen, J. Appl. Phys. 120(8), 085707 (2016).  https://doi.org/10.1063/1.4961562
  7. 7.
    C.A. Nelson, N.R. Monahan, X.Y. Zhu, Energy Environ. Sci. 6, 3508 (2013).  https://doi.org/10.1039/C3EE42098A
  8. 8.
    A.V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, J. Bailat, Prog. Photovolt. Res. Appl. 12(2–3), 113 (2004).  https://doi.org/10.1002/pip.533
  9. 9.
    P. Heremans, D. Cheyns, B.P. Rand, Acc. Chem. Res. 42(11), 1740 (2009).  https://doi.org/10.1021/ar9000923
  10. 10.
    D. König, K. Casalenuovo, Y. Takeda, G. Conibeer, J.F. Guillemoles, R. Patterson, L.M. Huang, M.A. Green, Phys. E 42(10), 2862 (2010).  https://doi.org/10.1016/j.physe.2009.12.032. 14th International Conference on Modulated Semiconductor Structures
  11. 11.
    M.C. Hanna, A.J. Nozik, J. Appl. Phys. 100(7), 074510 (2006).  https://doi.org/10.1063/1.2356795
  12. 12.
    American Society for Testing and Materials, ASTM G173-03: Standard tables for reference solar spectral irradiances: direct normal and hemispherical on  \(37^\circ \) tilted surface (ASTM International, West Conshohocken, PA, 2012), http://www.astm.org.  https://doi.org/10.1520/G0173-03R12
  13. 13.
    A. Cuevas, Energy Procedia 55, 53 (2014).  https://doi.org/10.1016/j.egypro.2014.08.073
  14. 14.
    S. Rühle, Solar Energy 130, 139 (2016).  https://doi.org/10.1016/j.solener.2016.02.015

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.EMAT, Department of PhysicsUniversity of AntwerpAntwerpenBelgium
  2. 2.CMT group, Department of PhysicsUniversity of AntwerpAntwerpBelgium

Personalised recommendations