Advertisement

Atomic Spectra Calculations for Fusion Plasma Engineering Using a Solvable Model Potential

  • M. E. Charro
  • L. M. Nieto
Chapter

Abstract

The analysis of the atomic spectra emitted by highly ionized atoms is a field of extraordinary richness and a part of atomic physics with applications in astrophysics, engineering, fusion plasma and materials research. Certain elements have attracted considerable attention because they are useful for spectroscopic diagnostics in fusion plasmas, where a prediction of the experimental spectra is required. Taking into account this fact, the Relativistic Quantum Defect Orbital (RQDO) method has been applied to calculate relevant atomic data, as transition rates for emission lines, in a high number of atoms and ions. This formalism, unlike sophisticated and costly self-consistent-field procedures, is a simple but reliable analytical method based on exactly solvable model potentials, a type of problems that always attracted Professor March’s attention. The method has the great advantage of a low computational cost, which is not increased as the atomic system becomes heavier. In this work, a highlight of this method is presented, together with an overview of the main atomic data obtained using it, which are useful in engineering for fusion plasma diagnostic.

Notes

Acknowledgements

Financial support from Spanish MINECO (MTM2014-57129-C2-1-P) and Junta de Castilla y León & FEDER (VA057U16) is acknowledged.

References

  1. 1.
    M.L. Glasser, N.H. March, L.M. Nieto, Phase Trans. 85(11), 1018 (2012).  https://doi.org/10.1080/01411594.2012.656121
  2. 2.
    N.H. March, P. Capuzzi, M.P. Tosi, Phys. Lett. A 327(2), 226 (2004).  https://doi.org/10.1016/j.physleta.2004.05.005
  3. 3.
    N.H. March, M.P. Tosi, Laser Part. Beams 16(1), 71 (1998), Reprinted in Ref. [32].  https://doi.org/10.1017/S0263034600011782
  4. 4.
    N.H. March, M.P. Tosi, J. Plasma Phys. 57(1), 121 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    M.A. Amato, N.H. March, Laser Part. Beams 14(4), 685 (1996).  https://doi.org/10.1017/S0263034600010405
  6. 6.
    R.E. Robson, B.V. Paranjape, N.H. March, Plasma Phys. Control. Fusion 36(4), 635 (1994).  https://doi.org/10.1088/0741-3335/36/4/005
  7. 7.
    C. Amovilli, N.H. March, S. Pfalzner, Phys. Chem. Liq. 24(1-2), 79 (1991).  https://doi.org/10.1080/00319109108030651
  8. 8.
    J. Mahanty, N.H. March, B.V. Paranjape, Appl. Surf. Sci. 33, 309 (1988).  https://doi.org/10.1016/0169-4332(88)90321-2
  9. 9.
    W.B. Leung, N.H. March, Plasma Phys. 19(3), 277 (1977).  https://doi.org/10.1088/0032-1028/19/3/008
  10. 10.
    B.C. Stratton, M. Bitter, K.W. Hill, D. Hillis, J. Hogan, Fusion Sci. Technol. 53, 431 (2008)CrossRefGoogle Scholar
  11. 11.
    C. Jupén, B. Denne-Hinnov, I. Martinson, L.J. Curtis, Phys. Scr. 68(4), 230 (2003).  https://doi.org/10.1238/Physica.Regular.068a00230
  12. 12.
    J. Karwowski, I. Martín, Phys. Rev. A 43, 4832 (1991).  https://doi.org/10.1103/PhysRevA.43.4832
  13. 13.
    I. Martín, J. Karwowski, J. Phys. B: At. Mol. Opt. Phys. 24(7), 1539 (1991).  https://doi.org/10.1088/0953-4075/24/7/009
  14. 14.
    E. Charro, I. Martín, Foundations of quantum physics, Anales de Física. Monografías, vol. 6, ed. by R. Blanco Alcañiz, Á. Mañanez Pérez, S. Marcos Marcos (Real Sociedad Española de Física, Madrid, 2002), pp. 331–349. ISBN 8493215031Google Scholar
  15. 15.
    I. Martín, J. Karwowski, D. Bielinska-Waz, J. Phys. A: Math. Gen. 33(4), 823 (2000).  https://doi.org/10.1088/0305-4470/33/4/315
  16. 16.
    E.U. Condon, G.H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1935)zbMATHGoogle Scholar
  17. 17.
    I.I. Sobelman, Atomic Spectra and Radiative Transitions (Springer, Berlin, 1979)CrossRefGoogle Scholar
  18. 18.
    M. Cohen, A. Dalgarno, Proc. R. Soc. A 293(1434), 359 (1966).  https://doi.org/10.1098/rspa.1966.0176
  19. 19.
    A. Dalgarno, E.M. Parkinson, Proc. R. Soc. A 301(1466), 253 (1967).  https://doi.org/10.1098/rspa.1967.0206
  20. 20.
    E. Biémont, M. Godefroid, Phys. Scr. 18(5), 323 (1978).  https://doi.org/10.1088/0031-8949/18/5/007
  21. 21.
    E. Charro, I. Martín, J. Phys. B: At. Mol. Opt. Phys. 35(15), 3227 (2002).  https://doi.org/10.1088/0953-4075/35/15/301
  22. 22.
    E. Charro, S. López-Ferrero, I. Martín, J. Phys. B: At. Mol. Opt. Phys. 34(21), 4243 (2001).  https://doi.org/10.1088/0953-4075/34/21/313
  23. 23.
    E. Charro, Z. Curiel, I. Martín, Astron. Astrophys. 387(3), 1146 (2002).  https://doi.org/10.1051/0004-6361:20020288
  24. 24.
    E. Charro, S. López-Ferrero, I. Martín, Astron. Astrophys. 406(2), 741 (2003).  https://doi.org/10.1051/0004-6361:20030660
  25. 25.
    E. Charro, Z. Curiel, I. Martín, Int. J. Quantum Chem. 108(4), 744 (2008).  https://doi.org/10.1002/qua.21552
  26. 26.
    E. Charro, I. Martín, Int. J. Quantum Chem. 90(1), 403 (2002).  https://doi.org/10.1002/qua.10030
  27. 27.
    C. Froese Fischer, J. Phys. B: At. Mol. Phys. 16(2), 157 (1983).  https://doi.org/10.1088/0022-3700/16/2/005
  28. 28.
    K.T. Cheng, Y.K. Kim, J.P. Desclaux, At. Data Nucl. Data Tables 24(2), 111 (1979).  https://doi.org/10.1016/0092-640X(79)90006-8
  29. 29.
    N.J. Peacock, M.F. Stamp, J.D. Silver, Phys. Scr. 1984(T8), 10 (1984).  https://doi.org/10.1088/0031-8949/1984/T8/002
  30. 30.
    E. Charro, J.L. López-Ayuso, I. Martín, J. Phys. B: At. Mol. Opt. Phys. 32(18), 4555 (1999).  https://doi.org/10.1088/0953-4075/32/18/314
  31. 31.
    E. Charro, I. Martín, J. Mol. Struct.: Theochem 621(1), 75 (2003), 2001 Quitel S.I.  https://doi.org/10.1016/S0166-1280(02)00535-3
  32. 32.
    N.H. March, G.G.N. Angilella (eds.), Many-Body Theory of Molecules, Clusters, and Condensed Phases (World Scientific, Singapore, 2009). ISBN 9789814271776zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of EducationUniversity of ValladolidValladolidSpain
  2. 2.Departamento de Física Teórica, Atómica y ÓpticaUniversidad de ValladolidValladolidSpain
  3. 3.Instituto de Investigación en Matemáticas (IMUVA), Facultad de CienciasUniversidad de ValladolidValladolidSpain

Personalised recommendations