Skip to main content

Atomic Spectra Calculations for Fusion Plasma Engineering Using a Solvable Model Potential

  • Chapter
  • First Online:
  • 820 Accesses

Abstract

The analysis of the atomic spectra emitted by highly ionized atoms is a field of extraordinary richness and a part of atomic physics with applications in astrophysics, engineering, fusion plasma and materials research. Certain elements have attracted considerable attention because they are useful for spectroscopic diagnostics in fusion plasmas, where a prediction of the experimental spectra is required. Taking into account this fact, the Relativistic Quantum Defect Orbital (RQDO) method has been applied to calculate relevant atomic data, as transition rates for emission lines, in a high number of atoms and ions. This formalism, unlike sophisticated and costly self-consistent-field procedures, is a simple but reliable analytical method based on exactly solvable model potentials, a type of problems that always attracted Professor March’s attention. The method has the great advantage of a low computational cost, which is not increased as the atomic system becomes heavier. In this work, a highlight of this method is presented, together with an overview of the main atomic data obtained using it, which are useful in engineering for fusion plasma diagnostic.

Dedicated to Professor N. H. March on the occasion of his 90th birthday.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.L. Glasser, N.H. March, L.M. Nieto, Phase Trans. 85(11), 1018 (2012). https://doi.org/10.1080/01411594.2012.656121

  2. N.H. March, P. Capuzzi, M.P. Tosi, Phys. Lett. A 327(2), 226 (2004). https://doi.org/10.1016/j.physleta.2004.05.005

  3. N.H. March, M.P. Tosi, Laser Part. Beams 16(1), 71 (1998), Reprinted in Ref. [32]. https://doi.org/10.1017/S0263034600011782

  4. N.H. March, M.P. Tosi, J. Plasma Phys. 57(1), 121 (1997)

    Article  ADS  Google Scholar 

  5. M.A. Amato, N.H. March, Laser Part. Beams 14(4), 685 (1996). https://doi.org/10.1017/S0263034600010405

  6. R.E. Robson, B.V. Paranjape, N.H. March, Plasma Phys. Control. Fusion 36(4), 635 (1994). https://doi.org/10.1088/0741-3335/36/4/005

  7. C. Amovilli, N.H. March, S. Pfalzner, Phys. Chem. Liq. 24(1-2), 79 (1991). https://doi.org/10.1080/00319109108030651

  8. J. Mahanty, N.H. March, B.V. Paranjape, Appl. Surf. Sci. 33, 309 (1988). https://doi.org/10.1016/0169-4332(88)90321-2

  9. W.B. Leung, N.H. March, Plasma Phys. 19(3), 277 (1977). https://doi.org/10.1088/0032-1028/19/3/008

  10. B.C. Stratton, M. Bitter, K.W. Hill, D. Hillis, J. Hogan, Fusion Sci. Technol. 53, 431 (2008)

    Article  Google Scholar 

  11. C. Jupén, B. Denne-Hinnov, I. Martinson, L.J. Curtis, Phys. Scr. 68(4), 230 (2003). https://doi.org/10.1238/Physica.Regular.068a00230

  12. J. Karwowski, I. Martín, Phys. Rev. A 43, 4832 (1991). https://doi.org/10.1103/PhysRevA.43.4832

  13. I. Martín, J. Karwowski, J. Phys. B: At. Mol. Opt. Phys. 24(7), 1539 (1991). https://doi.org/10.1088/0953-4075/24/7/009

  14. E. Charro, I. Martín, Foundations of quantum physics, Anales de Física. Monografías, vol. 6, ed. by R. Blanco Alcañiz, Á. Mañanez Pérez, S. Marcos Marcos (Real Sociedad Española de Física, Madrid, 2002), pp. 331–349. ISBN 8493215031

    Google Scholar 

  15. I. Martín, J. Karwowski, D. Bielinska-Waz, J. Phys. A: Math. Gen. 33(4), 823 (2000). https://doi.org/10.1088/0305-4470/33/4/315

  16. E.U. Condon, G.H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1935)

    MATH  Google Scholar 

  17. I.I. Sobelman, Atomic Spectra and Radiative Transitions (Springer, Berlin, 1979)

    Book  Google Scholar 

  18. M. Cohen, A. Dalgarno, Proc. R. Soc. A 293(1434), 359 (1966). https://doi.org/10.1098/rspa.1966.0176

  19. A. Dalgarno, E.M. Parkinson, Proc. R. Soc. A 301(1466), 253 (1967). https://doi.org/10.1098/rspa.1967.0206

  20. E. Biémont, M. Godefroid, Phys. Scr. 18(5), 323 (1978). https://doi.org/10.1088/0031-8949/18/5/007

  21. E. Charro, I. Martín, J. Phys. B: At. Mol. Opt. Phys. 35(15), 3227 (2002). https://doi.org/10.1088/0953-4075/35/15/301

  22. E. Charro, S. López-Ferrero, I. Martín, J. Phys. B: At. Mol. Opt. Phys. 34(21), 4243 (2001). https://doi.org/10.1088/0953-4075/34/21/313

  23. E. Charro, Z. Curiel, I. Martín, Astron. Astrophys. 387(3), 1146 (2002). https://doi.org/10.1051/0004-6361:20020288

  24. E. Charro, S. López-Ferrero, I. Martín, Astron. Astrophys. 406(2), 741 (2003). https://doi.org/10.1051/0004-6361:20030660

  25. E. Charro, Z. Curiel, I. Martín, Int. J. Quantum Chem. 108(4), 744 (2008). https://doi.org/10.1002/qua.21552

  26. E. Charro, I. Martín, Int. J. Quantum Chem. 90(1), 403 (2002). https://doi.org/10.1002/qua.10030

  27. C. Froese Fischer, J. Phys. B: At. Mol. Phys. 16(2), 157 (1983). https://doi.org/10.1088/0022-3700/16/2/005

  28. K.T. Cheng, Y.K. Kim, J.P. Desclaux, At. Data Nucl. Data Tables 24(2), 111 (1979). https://doi.org/10.1016/0092-640X(79)90006-8

  29. N.J. Peacock, M.F. Stamp, J.D. Silver, Phys. Scr. 1984(T8), 10 (1984). https://doi.org/10.1088/0031-8949/1984/T8/002

  30. E. Charro, J.L. López-Ayuso, I. Martín, J. Phys. B: At. Mol. Opt. Phys. 32(18), 4555 (1999). https://doi.org/10.1088/0953-4075/32/18/314

  31. E. Charro, I. Martín, J. Mol. Struct.: Theochem 621(1), 75 (2003), 2001 Quitel S.I. https://doi.org/10.1016/S0166-1280(02)00535-3

  32. N.H. March, G.G.N. Angilella (eds.), Many-Body Theory of Molecules, Clusters, and Condensed Phases (World Scientific, Singapore, 2009). ISBN 9789814271776

    MATH  Google Scholar 

Download references

Acknowledgements

Financial support from Spanish MINECO (MTM2014-57129-C2-1-P) and Junta de Castilla y León & FEDER (VA057U16) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Nieto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Charro, M.E., Nieto, L.M. (2018). Atomic Spectra Calculations for Fusion Plasma Engineering Using a Solvable Model Potential. In: Angilella, G., Amovilli, C. (eds) Many-body Approaches at Different Scales. Springer, Cham. https://doi.org/10.1007/978-3-319-72374-7_14

Download citation

Publish with us

Policies and ethics