Advertisement

Structural Properties of Ionic Aqueous Solutions

  • P. Gallo
  • M. Martin Conde
  • D. Corradini
  • P. Pugliese
  • M. Rovere
Chapter

Abstract

On the occasion of the 90th birthday of Norman March, we present here a short review of results on the structural properties of ionic aqueous solutions that we obtained in recent years by computer simulation. In particular we compare structural properties of alkali halides NaCl(aq), KCl(aq), KI(aq) to account for the role of cations and anions of different size. The modifications of the hydration shells and the changes in the water structure induced by the presence of the ions are investigated. It is found that the oxygen–oxygen structure can be strongly distorted at high ionic concentration. The hydrogen bonding however is preserved at all concentrations and temperatures. The relation between the perturbation induced by the ions and the different high density and low density liquid local order of water is also discussed.

References

  1. 1.
    N.H. March, M.P. Tosi, Atomic Dynamics in Liquids (Dover, New York, 1976)CrossRefGoogle Scholar
  2. 2.
    A. Rahman, F.H. Stillinger, J. Chem. Phys. 55(7), 3336 (1971).  https://doi.org/10.1063/1.1676585
  3. 3.
    F.H. Stillinger, A. Rahman, J. Chem. Phys. 57(3), 1281 (1972).  https://doi.org/10.1063/1.1678388
  4. 4.
    P. Gallo, K. Amann-Winkel, C.A. Angell, M.A. Anisimov, F. Caupin, C. Chakravarty, E. Lascaris, T. Loerting, A.Z. Panagiotopoulos, J. Russo, J.A. Sellberg, H.E. Stanley, H. Tanaka, C. Vega, L. Xu, L.G.M. Pettersson, Chem. Rev. 116(13), 7463 (2016).  https://doi.org/10.1021/acs.chemrev.5b00750
  5. 5.
    Y. Marcus, Chem. Rev. 109(3), 1346 (2009).  https://doi.org/10.1021/cr8003828. PMID: 19236019
  6. 6.
    H. Ohtaki, T. Radnai, Chem. Rev. 93(3), 1157 (1993).  https://doi.org/10.1021/cr00019a014
  7. 7.
    I. Waluyo, D. Nordlund, U. Bergmann, D. Schlesinger, L.G.M. Pettersson, A. Nilsson, J. Chem. Phys. 140(24), 244506 (2014).  https://doi.org/10.1063/1.4881600
  8. 8.
    A.K. Soper, K. Weckström, Biophys. Chem. 124(3), 180 (2006).  https://doi.org/10.1016/j.bpc.2006.04.009
  9. 9.
    R.W. Impey, P.A. Madden, I.R. McDonald, J. Phys. Chem. 87(25), 5071 (1983).  https://doi.org/10.1021/j150643a008
  10. 10.
    S.B. Zhu, G.W. Robinson, J. Chem. Phys. 97(6), 4336 (1992).  https://doi.org/10.1063/1.463903
  11. 11.
    R.M. Lynden-Bell, J.C. Rasaiah, J.P. Noworyta, Pure Appl. Chem. 73(11), 1721 (2001).  https://doi.org/10.1351/pac200173111721
  12. 12.
    S. Koneshan, J.C. Rasaiah, R.M. Lynden-Bell, S.H. Lee, J. Phys. Chem. B 102(21), 4193 (1998).  https://doi.org/10.1021/jp980642x
  13. 13.
    S. Koneshan, J.C. Rasaiah, J. Chem. Phys. 113(18), 8125 (2000).  https://doi.org/10.1063/1.1314341
  14. 14.
    J.C. Rasaiah, R.M. Lynden-Bell, Philos. Trans. R. Soc. Lond. A 359(1785), 1545 (2001).  https://doi.org/10.1098/rsta.2001.0865
  15. 15.
    A. Chandra, Phys. Rev. Lett. 85, 768 (2000).  https://doi.org/10.1103/PhysRevLett.85.768
  16. 16.
    S. Chowdhuri, A. Chandra, J. Chem. Phys. 115(8), 3732 (2001).  https://doi.org/10.1063/1.1387447
  17. 17.
    S. Chowdhuri, A. Chandra, J. Chem. Phys. 118(21), 9719 (2003).  https://doi.org/10.1063/1.1570405
  18. 18.
    H. Du, J.C. Rasaiah, J.D. Miller, J. Phys. Chem. B 111(1), 209 (2007).  https://doi.org/10.1021/jp064659o
  19. 19.
    I.S. Joung, T.E. Cheatham III, J. Phys. Chem. B 112(30), 9020 (2008).  https://doi.org/10.1021/jp8001614
  20. 20.
    P. Auffinger, T.E. Cheatham III, A.C. Vaiana, J. Chem. Theory Comput. 3(5), 1851 (2007).  https://doi.org/10.1021/ct700143s
  21. 21.
    P.J. Lenart, A. Jusufi, A.Z. Panagiotopoulos, J. Chem. Phys. 126(4), 044509 (2007).  https://doi.org/10.1063/1.2431169
  22. 22.
    D. Corradini, P. Gallo, M. Rovere, J. Chem. Phys. 128(24), 244508 (2008).  https://doi.org/10.1063/1.2939118
  23. 23.
    D. Corradini, M. Rovere, P. Gallo, J. Chem. Phys. 132(13), 134508 (2010).  https://doi.org/10.1063/1.3376776
  24. 24.
    D. Corradini, M. Rovere, P. Gallo, J. Phys. Chem. B 115(6), 1461 (2011).  https://doi.org/10.1021/jp1101237
  25. 25.
    P. Gallo, D. Corradini, M. Rovere, Phys. Chem. Chem. Phys. 13, 19814 (2011).  https://doi.org/10.1039/C1CP22166C
  26. 26.
    J.L. Aragones, M. Rovere, C. Vega, P. Gallo, J. Phys. Chem. B 118(28), 7680 (2014).  https://doi.org/10.1021/jp500937h
  27. 27.
    F. Hofmeister, Arch. Exp. Pathol. Pharmakol. 24, 247 (1888)CrossRefGoogle Scholar
  28. 28.
    V.A. Parsegian, Nature 378(6555), 335 (1995).  https://doi.org/10.1038/378335a0
  29. 29.
    B. Hribar, N.T. Southall, V. Vlachy, K.A. Dill, J. Am. Chem. Soc. 124(41), 12302 (2002)CrossRefGoogle Scholar
  30. 30.
    R. Leberman, A.K. Soper, Nature 378(6555), 364 (1995).  https://doi.org/10.1038/378364a0
  31. 31.
    D. Corradini, P. Gallo, J. Phys. Chem. B 115(48), 14161 (2011).  https://doi.org/10.1021/jp2045977. PMID: 21851078
  32. 32.
    W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79(2), 926 (1983).  https://doi.org/10.1063/1.445869
  33. 33.
    K.P. Jensen, W.L. Jorgensen, J. Chem. Theory Comput. 2(6), 1499 (2006).  https://doi.org/10.1021/ct600252r
  34. 34.
    J.L.F. Abascal, C. Vega, J. Chem. Phys. 123(23), 234505 (2005).  https://doi.org/10.1063/1.2121687
  35. 35.
    B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 4(3), 435 (2008).  https://doi.org/10.1021/ct700301q
  36. 36.
    L.M. Ramaniah, M. Bernasconi, M. Parrinello, J. Chem. Phys. 111(4), 1587 (1999).  https://doi.org/10.1063/1.479418
  37. 37.
    M.M. Conde, M. Rovere, P. Gallo, Phys. Chem. Chem. Phys. 19, 9566 (2017).  https://doi.org/10.1039/C7CP00665A

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • P. Gallo
    • 1
  • M. Martin Conde
    • 1
  • D. Corradini
    • 2
  • P. Pugliese
    • 1
  • M. Rovere
    • 1
  1. 1.Dipartimento di Matematica e FisicaUniversità “Roma Tre”RomaItaly
  2. 2.American Physical SocietyRidgeUSA

Personalised recommendations