Skip to main content

Structural Properties of Ionic Aqueous Solutions

  • Chapter
  • First Online:
Many-body Approaches at Different Scales
  • 884 Accesses

Abstract

On the occasion of the 90th birthday of Norman March, we present here a short review of results on the structural properties of ionic aqueous solutions that we obtained in recent years by computer simulation. In particular we compare structural properties of alkali halides NaCl(aq), KCl(aq), KI(aq) to account for the role of cations and anions of different size. The modifications of the hydration shells and the changes in the water structure induced by the presence of the ions are investigated. It is found that the oxygen–oxygen structure can be strongly distorted at high ionic concentration. The hydrogen bonding however is preserved at all concentrations and temperatures. The relation between the perturbation induced by the ions and the different high density and low density liquid local order of water is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.H. March, M.P. Tosi, Atomic Dynamics in Liquids (Dover, New York, 1976)

    Book  Google Scholar 

  2. A. Rahman, F.H. Stillinger, J. Chem. Phys. 55(7), 3336 (1971). https://doi.org/10.1063/1.1676585

  3. F.H. Stillinger, A. Rahman, J. Chem. Phys. 57(3), 1281 (1972). https://doi.org/10.1063/1.1678388

  4. P. Gallo, K. Amann-Winkel, C.A. Angell, M.A. Anisimov, F. Caupin, C. Chakravarty, E. Lascaris, T. Loerting, A.Z. Panagiotopoulos, J. Russo, J.A. Sellberg, H.E. Stanley, H. Tanaka, C. Vega, L. Xu, L.G.M. Pettersson, Chem. Rev. 116(13), 7463 (2016). https://doi.org/10.1021/acs.chemrev.5b00750

  5. Y. Marcus, Chem. Rev. 109(3), 1346 (2009). https://doi.org/10.1021/cr8003828. PMID: 19236019

  6. H. Ohtaki, T. Radnai, Chem. Rev. 93(3), 1157 (1993). https://doi.org/10.1021/cr00019a014

  7. I. Waluyo, D. Nordlund, U. Bergmann, D. Schlesinger, L.G.M. Pettersson, A. Nilsson, J. Chem. Phys. 140(24), 244506 (2014). https://doi.org/10.1063/1.4881600

  8. A.K. Soper, K. Weckström, Biophys. Chem. 124(3), 180 (2006). https://doi.org/10.1016/j.bpc.2006.04.009

  9. R.W. Impey, P.A. Madden, I.R. McDonald, J. Phys. Chem. 87(25), 5071 (1983). https://doi.org/10.1021/j150643a008

  10. S.B. Zhu, G.W. Robinson, J. Chem. Phys. 97(6), 4336 (1992). https://doi.org/10.1063/1.463903

  11. R.M. Lynden-Bell, J.C. Rasaiah, J.P. Noworyta, Pure Appl. Chem. 73(11), 1721 (2001). https://doi.org/10.1351/pac200173111721

  12. S. Koneshan, J.C. Rasaiah, R.M. Lynden-Bell, S.H. Lee, J. Phys. Chem. B 102(21), 4193 (1998). https://doi.org/10.1021/jp980642x

  13. S. Koneshan, J.C. Rasaiah, J. Chem. Phys. 113(18), 8125 (2000). https://doi.org/10.1063/1.1314341

  14. J.C. Rasaiah, R.M. Lynden-Bell, Philos. Trans. R. Soc. Lond. A 359(1785), 1545 (2001). https://doi.org/10.1098/rsta.2001.0865

  15. A. Chandra, Phys. Rev. Lett. 85, 768 (2000). https://doi.org/10.1103/PhysRevLett.85.768

  16. S. Chowdhuri, A. Chandra, J. Chem. Phys. 115(8), 3732 (2001). https://doi.org/10.1063/1.1387447

  17. S. Chowdhuri, A. Chandra, J. Chem. Phys. 118(21), 9719 (2003). https://doi.org/10.1063/1.1570405

  18. H. Du, J.C. Rasaiah, J.D. Miller, J. Phys. Chem. B 111(1), 209 (2007). https://doi.org/10.1021/jp064659o

  19. I.S. Joung, T.E. Cheatham III, J. Phys. Chem. B 112(30), 9020 (2008). https://doi.org/10.1021/jp8001614

  20. P. Auffinger, T.E. Cheatham III, A.C. Vaiana, J. Chem. Theory Comput. 3(5), 1851 (2007). https://doi.org/10.1021/ct700143s

  21. P.J. Lenart, A. Jusufi, A.Z. Panagiotopoulos, J. Chem. Phys. 126(4), 044509 (2007). https://doi.org/10.1063/1.2431169

  22. D. Corradini, P. Gallo, M. Rovere, J. Chem. Phys. 128(24), 244508 (2008). https://doi.org/10.1063/1.2939118

  23. D. Corradini, M. Rovere, P. Gallo, J. Chem. Phys. 132(13), 134508 (2010). https://doi.org/10.1063/1.3376776

  24. D. Corradini, M. Rovere, P. Gallo, J. Phys. Chem. B 115(6), 1461 (2011). https://doi.org/10.1021/jp1101237

  25. P. Gallo, D. Corradini, M. Rovere, Phys. Chem. Chem. Phys. 13, 19814 (2011). https://doi.org/10.1039/C1CP22166C

  26. J.L. Aragones, M. Rovere, C. Vega, P. Gallo, J. Phys. Chem. B 118(28), 7680 (2014). https://doi.org/10.1021/jp500937h

  27. F. Hofmeister, Arch. Exp. Pathol. Pharmakol. 24, 247 (1888)

    Article  Google Scholar 

  28. V.A. Parsegian, Nature 378(6555), 335 (1995). https://doi.org/10.1038/378335a0

  29. B. Hribar, N.T. Southall, V. Vlachy, K.A. Dill, J. Am. Chem. Soc. 124(41), 12302 (2002)

    Article  Google Scholar 

  30. R. Leberman, A.K. Soper, Nature 378(6555), 364 (1995). https://doi.org/10.1038/378364a0

  31. D. Corradini, P. Gallo, J. Phys. Chem. B 115(48), 14161 (2011). https://doi.org/10.1021/jp2045977. PMID: 21851078

  32. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79(2), 926 (1983). https://doi.org/10.1063/1.445869

  33. K.P. Jensen, W.L. Jorgensen, J. Chem. Theory Comput. 2(6), 1499 (2006). https://doi.org/10.1021/ct600252r

  34. J.L.F. Abascal, C. Vega, J. Chem. Phys. 123(23), 234505 (2005). https://doi.org/10.1063/1.2121687

  35. B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 4(3), 435 (2008). https://doi.org/10.1021/ct700301q

  36. L.M. Ramaniah, M. Bernasconi, M. Parrinello, J. Chem. Phys. 111(4), 1587 (1999). https://doi.org/10.1063/1.479418

  37. M.M. Conde, M. Rovere, P. Gallo, Phys. Chem. Chem. Phys. 19, 9566 (2017). https://doi.org/10.1039/C7CP00665A

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rovere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gallo, P., Martin Conde, M., Corradini, D., Pugliese, P., Rovere, M. (2018). Structural Properties of Ionic Aqueous Solutions. In: Angilella, G., Amovilli, C. (eds) Many-body Approaches at Different Scales. Springer, Cham. https://doi.org/10.1007/978-3-319-72374-7_13

Download citation

Publish with us

Policies and ethics