Advertisement

Kovacs Effect and the Relation Between Glasses and Supercooled Liquids

  • F. Aliotta
  • R. C. Ponterio
  • F. Saija
  • P. V. Giaquinta
Chapter

Abstract

In this note we revisit the Kovacs effect, concerning the way in which the volume of a glass-forming liquid, which has been driven out of equilibrium, changes with time while the system evolves towards a metastable state. The theoretical explanation of this phenomenon has attracted much interest even in recent years, because of its relation with some subtle aspects of the still elusive nature of the glass transition. In fact, even if there is a rather general consensus on the fact that what is experimentally observed on cooling is the dramatic effect produced by the dynamical arrest of slower degrees of freedom over the experimental time scale, it is not yet clear whether this phenomenology can be justified upon assuming the existence of an underlying (possibly, high order) phase transition at lower temperatures.

Notes

Acknowledgements

The authors belonging to the Institute for Chemical-Physical Processes (IPCF) of the National Research Council (CNR) recall with enthusiasm the visit that Professor N. H. March paid to their institute in 2010. PVG expresses his profound gratitude to Professor March who invited him to visit the Imperial College of Science and Technology in London (UK) and later, on repeated occasions, the Theoretical Chemistry Department of the University of Oxford (UK) in the earlier stages of his post-graduation career. Working with and learning from him has always been an influential, unforgettable experience.

References

  1. 1.
    G. Biroli, J.P. Garrahan, J. Chem. Phys. 138(12), 12A301 (2013). https://doi.org/10.1063/1.4795539
  2. 2.
    M.D. Ediger, P. Harrowell, J. Chem. Phys. 137(8), 080901 (2012). https://doi.org/10.1063/1.4747326
  3. 3.
    W. Kauzmann, Chem. Rev. 43(2), 219 (1948). https://doi.org/10.1021/cr60135a002
  4. 4.
    P.N. Pusey, W. van Megen, Nature 320(6060), 340 (1986). https://doi.org/10.1038/320340a0
  5. 5.
    V. Lubchenko, P.G. Wolynes, Ann. Rev. Phys. Chem. 58(1), 235 (2007). https://doi.org/10.1146/annurev.physchem.58.032806.104653
  6. 6.
    F.H. Stillinger, J. Chem. Phys. 88(12), 7818 (1988). https://doi.org/10.1063/1.454295
  7. 7.
    J.P. Eckmann, I. Procaccia, Phys. Rev. E 78, 011503 (2008). https://doi.org/10.1103/PhysRevE.78.011503
  8. 8.
    W. van Megen, T.C. Mortensen, S.R. Williams, J. Müller, Phys. Rev. E 58, 6073 (1998). https://doi.org/10.1103/PhysRevE.58.6073
  9. 9.
    L. Boué, H.G.E. Hentschel, V. Ilyin, I. Procaccia, J. Phys. Chem. B 115(48), 14301 (2011). https://doi.org/10.1021/jp205773c
  10. 10.
    F. Mallamace, C. Corsaro, N. Leone, V. Villari, N. Micali, S. Chen, 4, 3747 (2014), Scientific Reports. https://doi.org/10.1038/srep03747
  11. 11.
    P.G. Debenedetti, J. Phys.: Condens. Matter 15(45), R1669 (2003). https://doi.org/10.1088/0953-8984/15/45/R01
  12. 12.
    H.E. Stanley, P. Kumar, L. Xu, Z. Yan, M.G. Mazza, S.V. Buldyrev, S. Chen, F. Mallamace, Physica A 386(2), 729 (2007), Disorder and Complexity. https://doi.org/10.1016/j.physa.2007.07.044
  13. 13.
    R.J. Speedy, J. Phys. Chem. 86(6), 982 (1982). https://doi.org/10.1021/j100395a030
  14. 14.
    O. Mishima, L.D. Calvert, E. Whalley, Nature 314(6006), 76 (1985). https://doi.org/10.1038/314076a0
  15. 15.
    H.E. Stanley, L. Cruz, S.T. Harrington, P.H. Poole, S. Sastry, F. Sciortino, F.W. Starr, R. Zhang, Physica A 236(1), 19 (1997), Proceedings of the Workshop on Current Problems in Complex Fluids. https://doi.org/10.1016/S0378-4371(96)00429-3
  16. 16.
    S. Sastry, P.G. Debenedetti, F. Sciortino, H.E. Stanley, Phys. Rev. E 53, 6144 (1996). https://doi.org/10.1103/PhysRevE.53.6144
  17. 17.
    O. Mishima, H.E. Stanley, Nature 392(6672), 164 (1998). https://doi.org/10.1038/32386
  18. 18.
    O. Mishima, Y. Suzuki, Nature 419(6907), 599 (2002). https://doi.org/10.1038/nature01106
  19. 19.
    A.J. Kovacs, Transition vitreuse dans les polymères amorphes. Etude phénoménologique (Springer Berlin Heidelberg, Berlin, Heidelberg), (Fortschritte Der Hochpolymeren-Forschung. Advances in Polymer Science) 3(3), 394–507 (1964). ISBN 978-3-540-37073-4. https://doi.org/10.1007/BFb0050366
  20. 20.
    S. Mossa, F. Sciortino, Phys. Rev. Lett. 92, 045504 (2004). https://doi.org/10.1103/PhysRevLett.92.045504
  21. 21.
    C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88(6), 3113 (2000). https://doi.org/10.1063/1.1286035
  22. 22.
    E. Bouchbinder, J.S. Langer, Soft Matter 6, 3065 (2010). https://doi.org/10.1039/C001388A
  23. 23.
    S.S. Chang, A.B. Bestul, J. Chem. Phys. 56(1), 503 (1972). https://doi.org/10.1063/1.1676895
  24. 24.
    M. Naoki, S. Koeda, J. Phys. Chem. 93(2), 948 (1989). https://doi.org/10.1021/j100339a078
  25. 25.
    J.E.K. Schawe, Thermochimica Acta 260, 1 (1995). https://doi.org/10.1016/0040-6031(95)90466-2
  26. 26.
    I. Alig, Thermochimica Acta 304, 35 (1997), Temperature Modulated Calorimetry. https://doi.org/10.1016/S0040-6031(97)00174-3
  27. 27.
    F. Aliotta, P.V. Giaquinta, M. Pochylski, R.C. Ponterio, S. Prestipino, F. Saija, C. Vasi, J. Chem. Phys. 138(18), 184504 (2013). https://doi.org/10.1063/1.4803659
  28. 28.
    T.M. Nieuwenhuizen, J. Chem. Phys. 115(17), 8083 (2001). https://doi.org/10.1063/1.1399036
  29. 29.
    H. Hoffmann, Mat.-wiss. u, Werkstofftech. 43(6), 528 (2012). https://doi.org/10.1002/mawe.201200673
  30. 30.
    F. Aliotta, P.V. Giaquinta, R.C. Ponterio, S. Prestipino, F. Saija, G. Salvato, C. Vasi, 4, 7230 (2014), Article, Scientific Reports. https://doi.org/10.1038/srep07230
  31. 31.
    C.A. Angell, E.J. Sare, J. Donnella, D.R. MacFarlane, J. Phys. Chem. 85(11), 1461 (1981). https://doi.org/10.1021/j150611a001

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • F. Aliotta
    • 1
  • R. C. Ponterio
    • 1
  • F. Saija
    • 1
  • P. V. Giaquinta
    • 2
  1. 1.CNR-IPCFMessinaItaly
  2. 2.Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della TerraUniversità degli Studi di MessinaMessinaItaly

Personalised recommendations