Correlations in the Superconducting Properties of Several Material Classes

Chapter

Abstract

Complex phenomena, as those involving many particles, may still exhibit simple patterns, usually expressed by simple relations among relevant quantities. We briefly recount how Professor Norman March led our way through superconducting experiments for several material classes, including the high-\(T_c\) cuprates and the heavy-Fermion materials, in the unending quest for simple paths among intricated data.

Notes

Acknowledgements

It is a pleasure and a honour to acknowledge scientific guidance, fruitful collaboration, and intimate friendship with Professor Norman March during the last several decades. RP wishes to thank the Department of Theoretical Chemistry, Oxford University, for much hospitality during his yearly visits for over a decade in the 1990s. Similarly, GGNA wishes to thank the Department of Physics, University of Antwerp, for providing a fruitful and stimulating environment where it was possible to meet and interact with Professor March for almost a decade in the 2000s. In particular, thanks are due to Professors I. Howard, D. Lamoen and K. Van Alsenoy, as well as to Dr F. E. Leys.

References

  1. 1.
    L.N. Cooper, Phys. Rev. 104, 1189 (1956).  https://doi.org/10.1103/PhysRev.104.1189
  2. 2.
    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 106, 162 (1957).  https://doi.org/10.1103/PhysRev.106.162
  3. 3.
    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108(5), 1175 (1957).  https://doi.org/10.1103/PhysRev.108.1175
  4. 4.
    H. Kohno, K. Yamada, Prog. Theor. Phys. 85(1), 13 (1991).  https://doi.org/10.1143/ptp/85.1.13
  5. 5.
    N.H. March, R. Pucci, S.A. Egorov, Phys. Chem. Liq. 28(2), 141 (1994).  https://doi.org/10.1080/00319109408029549
  6. 6.
    S.A. Egorov, N.H. March, Phys. Chem. Liq. 27(3), 195 (1994).  https://doi.org/10.1080/00319109408029525
  7. 7.
    S.A. Egorov, N.H. March, Phys. Chem. Liq. 30(1), 59 (1995).  https://doi.org/10.1080/00319109508028433
  8. 8.
    G.G.N. Angilella, N.H. March, R. Pucci, Phys. Chem. Liq. 38, 615 (2000).  https://doi.org/10.1080/00319100008030308
  9. 9.
    B. Bucher, P. Steiner, J. Karpinski, E. Kaldis, P. Wachter, Phys. Rev. Lett. 70, 2012 (1993).  https://doi.org/10.1103/PhysRevLett.70.2012
  10. 10.
    P. Nozières, S. Schmitt-Rink, J. Low Temp. Phys. 59(3), 195 (1985).  https://doi.org/10.1007/BF00683774
  11. 11.
    F. Pistolesi, G.C. Strinati, Phys. Rev. B 49, 6356 (1994).  https://doi.org/10.1103/PhysRevB.49.6356
  12. 12.
    M. Randeria, in Bose Einstein Condensation, ed. by A. Griffin, D. Snoke, S. Stringari (Cambridge University Press, Cambridge, 1995), p. 355CrossRefGoogle Scholar
  13. 13.
    A.S. Davydov, Phys. Rep. 190(4), 191 (1990).  https://doi.org/10.1016/0370-1573(90)90061-6
  14. 14.
    A.S. Alexandrov, Theory of Superconductivity: From Weak to Strong Coupling (IOP Publishing, Bristol, 2003)CrossRefGoogle Scholar
  15. 15.
    A. La Magna, R. Pucci, Phys. Rev. B 55, 14886 (1997).  https://doi.org/10.1103/PhysRevB.55.14886
  16. 16.
    P.W. Anderson, Science 235, 1196 (1987).  https://doi.org/10.1126/science.235.4793.1196
  17. 17.
    P.W. Anderson, G. Baskaran, Z. Zou, T. Hsu, Phys. Rev. Lett. 58, 2790 (1987).  https://doi.org/10.1103/PhysRevLett.58.2790
  18. 18.
    G. Baskaran, Z. Zou, P.W. Anderson, Solid State Commun. 63(11), 973 (1987).  https://doi.org/10.1016/0038-1098(87)90642-9
  19. 19.
    G. Baskaran, P.W. Anderson, Phys. Rev. B 37, 580 (1988).  https://doi.org/10.1103/PhysRevB.37.580
  20. 20.
    G. Baskaran, in Many-Body Approaches at Different Scales: A Tribute to Norman H. March on the Occasion of his 90th Birthday, chap. 5, ed. by G.G.N. Angilella, C. Amovilli (Springer, New York, 2018), p. 43. (This volume).  https://doi.org/10.1007/978-3-319-72374-7_5
  21. 21.
    P.W. Anderson, Phys. Rev. B 42, 2624 (1990).  https://doi.org/10.1103/PhysRevB.42.2624
  22. 22.
    P.W. Anderson, Phys. Rev. Lett. 64, 1839 (1990).  https://doi.org/10.1103/PhysRevLett.64.1839. Reprinted in [24]
  23. 23.
    S. Chakravarty, A. Sudbø, P.W. Anderson, S. Strong, Science 261(5119), 337 (1993).  https://doi.org/10.1126/science.261.5119.337
  24. 24.
    P.W. Anderson, The Theory of Superconductivity in the High- \(T_c\) Cuprates (Princeton University Press, Princeton NJ, 1997). ISBN 9780691043654Google Scholar
  25. 25.
    G.G.N. Angilella, R. Pucci, F. Siringo, A. Sudbø, Phys. Rev. B 59, 1339 (1999).  https://doi.org/10.1103/PhysRevB.59.1339
  26. 26.
    G.G.N. Angilella, A. Sudbø, R. Pucci, Eur. Phys. J. B 15(2), 269 (2000).  https://doi.org/10.1007/s100510051125
  27. 27.
    J.W. Loram, K.A. Mirza, J.R. Cooper, W.Y. Liang, Phys. Rev. Lett. 71, 1740 (1993).  https://doi.org/10.1103/PhysRevLett.71.1740
  28. 28.
    M. Randeria, J. Campuzano, in Models and Phenomenology for Conventional and High-Temperature Superconductivity, ed. by G. Iadonisi, J.R. Schrieffer, M.L. Chiofalo (IOS, Amsterdam, 1999), Proceedings of the CXXXVI International School of Physics E. Fermi (Varenna, Italy, 1997), pp. 115–139. ISBN 9781614992219Google Scholar
  29. 29.
    M. Kugler, Ø. Fischer, C. Renner, S. Ono, Y. Ando, Phys. Rev. Lett. 86, 4911 (2001).  https://doi.org/10.1103/PhysRevLett.86.4911
  30. 30.
    V.J. Emery, S.A. Kivelson, Nature 374(6521), 434 (1995).  https://doi.org/10.1038/374434a0
  31. 31.
    Y.J. Uemura, G.M. Luke, B.J. Sternlieb, J.H. Brewer, J.F. Carolan, W.N. Hardy, R. Kadono, J.R. Kempton, R.F. Kiefl, S.R. Kreitzman, P. Mulhern, T.M. Riseman, D.L. Williams, B.X. Yang, S. Uchida, H. Takagi, J. Gopalakrishnan, A.W. Sleight, M.A. Subramanian, C.L. Chien, M.Z. Cieplak, G. Xiao, V.Y. Lee, B.W. Statt, C.E. Stronach, W.J. Kossler, X.H. Yu, Phys. Rev. Lett. 62, 2317 (1989).  https://doi.org/10.1103/PhysRevLett.62.2317
  32. 32.
    Y.J. Uemura, L.P. Le, G.M. Luke, B.J. Sternlieb, W.D. Wu, J.H. Brewer, T.M. Riseman, C.L. Seaman, M.B. Maple, M. Ishikawa, D.G. Hinks, J.D. Jorgensen, G. Saito, H. Yamochi, Phys. Rev. Lett. 66, 2665 (1991).  https://doi.org/10.1103/PhysRevLett.66.2665
  33. 33.
    G.G.N. Angilella, N.H. March, R. Pucci, Phys. Rev. B 62, 13919 (2000).  https://doi.org/10.1103/PhysRevB.62.13919
  34. 34.
    G.G.N. Angilella, N.H. March, R. Pucci, Supercond. Sci. Technol. 18, 557 (2005).  https://doi.org/10.1088/0953-2048/18/4/028
  35. 35.
    G.G.N. Angilella, N.H. March, R. Pucci, Phys. Chem. Liq. 39, 405 (2001).  https://doi.org/10.1080/00319100108031673
  36. 36.
    G.G.N. Angilella, F.E. Leys, N.H. March, R. Pucci, Phys. Lett. A 322(5–6), 375 (2004).  https://doi.org/10.1016/j.physleta.2003.12.066
  37. 37.
    G.G.N. Angilella, in Correlations in Condensed Matter Under Extreme Conditions: A Tribute to Renato Pucci on the Occasion of his 70th Birthday, chap. 3, ed. by G.G.N. Angilella, A. La Magna (Springer, Berlin, 2017), pp. 31–46.  https://doi.org/10.1007/978-3-319-53664-4_3. ISBN 9783319536637
  38. 38.
    G.G.N. Angilella, N.H. March, R. Pucci, Eur. Phys. J. B 39(4), 427 (2004).  https://doi.org/10.1140/epjb/e2004-00213-y
  39. 39.
    E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, O.K. Andersen, Phys. Rev. Lett. 87(4), 047003 (2001).  https://doi.org/10.1103/PhysRevLett.87.047003
  40. 40.
    G.G.N. Angilella, E. Piegari, A.A. Varlamov, Phys. Rev. B 66(1), 014501 (2002).  https://doi.org/10.1103/PhysRevB.66.014501
  41. 41.
    G.G.N. Angilella, G. Balestrino, P. Cermelli, P. Podio-Guidugli, A.A. Varlamov, Eur. Phys. J. B 26(1), 67 (2002).  https://doi.org/10.1140/epjb/e20020067
  42. 42.
    I.M. Lifshitz, Sov. Phys. JETP 11, 1130 (1960); [Zh. Eksp. Teor. Fiz. 38, 1569 (1960)]Google Scholar
  43. 43.
    Ya.M. Blanter, M.I. Kaganov, A.V. Pantsulaya, A.A. Varlamov, Phys. Rep. 245(4), 159 (1994).  https://doi.org/10.1016/0370-1573(94)90103-1
  44. 44.
    J.P. Carbotte, E. Schachinger, D.N. Basov, Nature 401(6751), 354 (1999).  https://doi.org/10.1038/43843
  45. 45.
    J. Orenstein, Nature 401(6751), 333 (1999).  https://doi.org/10.1038/43801
  46. 46.
    G.R. Stewart, Z. Fisk, J.O. Willis, J.L. Smith, Phys. Rev. Lett. 52, 679 (1984).  https://doi.org/10.1103/PhysRevLett.52.679
  47. 47.
    G.R. Stewart, Rev. Mod. Phys. 56(4), 755 (1984).  https://doi.org/10.1103/RevModPhys.56.755
  48. 48.
    S.S. Saxena, P. Agarwal, K. Ahilan, F.M. Grosche, R.K.W. Haselwimmer, M.J. Steiner, E. Pugh, I.R. Walker, S.R. Julian, P. Monthoux, G.G. Lonzarich, A. Huxley, I. Sheikin, D. Braithwaite, J. Flouquet, Nature 406(6796), 587 (2000).  https://doi.org/10.1038/35020500
  49. 49.
    D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet, J. Brison, E. Lhotel, C. Paulsen, Nature (London) 413(6856), 613 (2001).  https://doi.org/10.1038/35098048
  50. 50.
    T. Hattori, Y. Ihara, Y. Nakai, K. Ishida, Y. Tada, S. Fujimoto, N. Kawakami, E. Osaki, K. Deguchi, N.K. Sato, I. Satoh, Phys. Rev. Lett. 108, 066403 (2012).  https://doi.org/10.1103/PhysRevLett.108.066403
  51. 51.
    P. Monthoux, G.G. Lonzarich, Phys. Rev. B 59, 14598 (1999).  https://doi.org/10.1103/PhysRevB.59.14598
  52. 52.
    Ar Abanov, A.V. Chubukov, A.M. Finkel’stein, Europhys. Lett. 54(4), 488 (2001).  https://doi.org/10.1209/epl/i2001-00266-0
  53. 53.
    G.G.N. Angilella, N.H. March, R. Pucci, Phys. Rev. B 65(9), 092509 (2002).  https://doi.org/10.1103/PhysRevB.65.092509

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica e AstronomiaUniversità di CataniaCataniaItaly
  2. 2.IMM-CNR, UdR CataniaCataniaItaly
  3. 3.INFN, Sez. CataniaCataniaItaly
  4. 4.Scuola Superiore di Catania, Università di CataniaCataniaItaly

Personalised recommendations