Advertisement

Conceptual Design of the RDF Granulation Line

  • Marek Wróbel
  • Jarosław Frączek
  • Krzysztof Mudryk
  • Marcin Jewiarz
  • Krzysztof Dziedzic
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

The paper presents a concept of a technological line for the production of granulated fuel from RDF. The main assumption of the line is the complexity of processing a raw RDF with very variable input parameters (morphological and granulometric composition, proportion and type of impurities as well as variable moisture content) to a pellet with high quality parameters (specific density, mechanical durability). Based on an analysis of the raw material characteristics and preliminary research on the RDF granulation process, design guidelines and assumptions were proposed. This allowed to develop a block diagram including all technological operations which must be used to process raw material. For each operation a technical solution was proposed which best fulfills the stated assumptions. A vacuum transport system of raw material has been proposed to reduce the amount of fly dust generated during the production process. This system is equipped with a central filter from which the dust is driven for re-granulation. Such system, reduces production of waste byproducts. As the pelletizing unit, a developed by the authors pelletizer with modified dye was proposed. Thanks to this solution, the granulation process will proceed in the temperature about 100 °C. Beside recommended moisture content and fineness of the raw material, high temperature helps ensure the predetermined quality of pellets.

Keywords

RDF Agglomeration technology Conceptual design Fuel quality 

Notes

Acknowledgements

This research are financed by Polish Centre for Research and Development and National Fund for Environmental Protection and Water Management under the GEKON Programme—project No: GEKON2/05/268002/17/2015. “EkoRDF—an innovative manufacturing technology of alternative fuel from municipal waste for power and heating plants—a key component of the Polish waste management system”.

References

  1. 1.
    Gawłowski, S.: Zarządzanie pozyskanymi funduszami unijnymi w Polsce w obszarze ochrony środowiska. Annu. Set. Environ. Prot. 13, 269–282 (2011)Google Scholar
  2. 2.
    Gawłowski, S., Gawłowska-Listowska, R., Piecuch, T.: Uwarunkowania i prognoza bezpieczeństwa energetycznego Polski na lata 2010–2110. Annu. Set. Environ. Prot. 10, 127–176 (2012)Google Scholar
  3. 3.
    Cao, Y., Pawłowski, L.: Lubelskie doświadczenia we współspalaniu odpadów komunalnych w przemyśle cementowym. Annu. Set. Environ. Prot. 14, 132–145 (2012)Google Scholar
  4. 4.
    Sarc, R., Lorber, K.E.: Production, quality and quality assurance of refuse derived fuels (RDFs). Waste Manag. 33(9), 1825–1834 (2013).  https://doi.org/10.1016/j.wasman.2013.05.004CrossRefGoogle Scholar
  5. 5.
    Pająk, T.: Termiczna utylizacja odpadów komunalnych jako element współczesnej kompleksowej gospodarki odpadami. Przegląd Komunalny 3(78), 17–41 (1998)Google Scholar
  6. 6.
    Piecuch, T., Dąbrowski, T., Piekarski, J., Dąbrowski, J.: Energetyczne wykorzystanie odpadów przemysłu chemii organicznej. Kwartalnik Gaz Rosji 2, 74–77 (2007)Google Scholar
  7. 7.
    Zechner, V., Guziurek, M., Fecko, P.: Application of brown coal pyrolytic oils in black coal slurry flotation mineral resources management. Gospodarka Surowcami Mineralnymi, IGSMiE PAN 29(2), 51–67 (2013)Google Scholar
  8. 8.
    Piecuch, T., Dąbek, L., Juraszka, B.: Spalanie i piroliza odpadów oraz ochrona powietrza przed szkodliwymi składnikami spalin. Podręcznik Politechniki Koszalińskiej, Koszalin (2002)Google Scholar
  9. 9.
    Dębicka, M., Żygadło, M., Latosińska, J.: Investigations of bio-drying process of municipal solid waste. Ecol. Chem. Eng. A 20(12), 1461–1470 (2013).  https://doi.org/10.2428/ecea.2013.20(12)132CrossRefGoogle Scholar
  10. 10.
    Jędrczak, A., Szpadt, R.: Określenie metodyki badań składu sitowego, morfolgicznego i chemicznego odpadów komunalnych. NFOŚiGW, Kamieniec Wrocławski, Zielona Góra (2006). (in polish)Google Scholar
  11. 11.
    Dziedzic, K., Łapczyńska-Kordon, B., Malinowski, M., Niemiec, M., Sikora, J.: Impact of aerobic biostabilisation and biodrying process of municipal solid waste on minimisation of waste deposited in landfills. Chem. Process. Eng. 36(4), 381–394 (2015).  https://doi.org/10.1515/cpe-2015-0027CrossRefGoogle Scholar
  12. 12.
    Pedersen, M.N., Jensen, P.A., Hjuler, K., Nielsen, M., Dam-Johansen, K.: Agglomeration and deposition behavior of solid recovered fuel. Energy Fuels 30(10), 7858–7866 (2016).  https://doi.org/10.1021/acs.energyfuels.6b00839CrossRefGoogle Scholar
  13. 13.
    Singh, R.N., Bhoi, P.R., Patel, S.R.: Modification of commercial briquetting machine to produce 35 mm diameter briquettes suitable for gasification and combustion. Renew. Energy 32, 474–479 (2007)CrossRefGoogle Scholar
  14. 14.
    Matus, M., Krizan, P.: Influence of structural parameters in compacting process on quality of biomass pressing. Aplimat J. Appl. Math. 3(3), 87–96 (2010). ISSN:1337-6365Google Scholar
  15. 15.
    Gulley, B.W., Williamson, G.J., Carmichael, R.Q., Cooke, D.F., Taylor, R.: U.S. Patent No. 4,561,860. Washington, DC: U.S. Patent and Trademark Office (1995). https://www.google.com/patents/US4561860
  16. 16.
    Li, Y., Liu, H., Zhang, O.: High-pressure compaction of municipal solid waste to form densified fuel. Fuel. Process. Technol. 74(2), 81–91 (2001). doi: https://doi.org/10.1016/S0378-3820(01)00218-1CrossRefGoogle Scholar
  17. 17.
    Marsh, R., Griffiths, A.J., Williams, K.P., Wilcox, S.J.: Physical and thermal properties of extruded refuse derived fuel. Fuel Process. Technol. 88(7), 701–706 (2007).  https://doi.org/10.1016/j.fuproc.2007.01.015CrossRefGoogle Scholar
  18. 18.
    Kersa, J., Kulua, P., Šoošb, L., Aruniita, A., Laurmaa, V., Kaskc, Ü.: Determination of physical, mechanical and burning characteristics of polymeric waste material briquettes. Estonian J. Eng. 16(4), 307–316 (2010). doi: https://doi.org/10.3176/eng.2010.4.06CrossRefGoogle Scholar
  19. 19.
    PN-EN ISO 17225-2:2014-07: Solid Biofuels—Fuel Specifications and Classes—Part 2: Graded Wood PelletsGoogle Scholar
  20. 20.
    PN-EN ISO 17225–6:2014-08: Solid Biofuels—Fuel Specifications and Classes—Part 6: Graded Non-woody PelletsGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Production and Power EngineeringUniversity of Agriculture in KrakowKrakowPoland

Personalised recommendations