Evaluation of Selected Species of Woody Plants in Terms of Suitability for Energy Production

  • Anna Karbowniczak
  • Joanna Hamerska
  • Marek Wróbel
  • Marcin Jewiarz
  • Krzysztof Nęcka
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

The paper presents results of research on selected fuel quality parameters of five species of woody plants. On the basis of the obtained results an assessment of the suitability of the examined species for energy purposes was carried out. The research material was biomass of willow, poplar, alder, black locust and ashleaf maple. Determined: Moisture content after harvest and after seasoning, ash content, bark and wood content in shoots, gross calorific values and specific density were determined. The research methods used are in line with the guidelines for quality testing of solid biofuels.

Keywords

Biomass FVI Energy crops Soild biofuels 

Notes

Acknowledgements

This research was financed by the Ministry of Science and Higher Education of the Republic of Poland (statutory activities DS-3600/WIPiE/2017, Faculty of Production and Power Engineering, University of Agriculture in Krakow).

References

  1. 1.
    Dyrektywa Parlamentu Europejskiego i Rady 2009/28/WE z dnia 23 kwietnia 2009 r. w sprawie promowania stosowania energii ze źródeł odnawialnych zmieniająca i w następstwie uchylająca dyrektywy 2001/77/WE oraz 2003/30/WEGoogle Scholar
  2. 2.
    Abuelnuor, A.A.A., et al.: Characteristics of biomass in flameless combustion: a review. Renew. Sustain. Energy Rev. 33, 363–370 (2014)CrossRefGoogle Scholar
  3. 3.
    Corma, A., et al.: Production of high-quality diesel from biomass waste products. Angew. Chem. 123(10), 2423–2426 (2011)CrossRefGoogle Scholar
  4. 4.
    Nunes, L.J.R., Matias, J.C.O., Catalão, J.P.S.A.: Review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renew. Sustain. Energy Rev. 40, 153–160 (2014)Google Scholar
  5. 5.
    Ruiz, J.A. et al.: Biomass gasification for electricity generation: review of current technology barriers. Renew. Sustain. Energy Rev. 18, 174–183 (2013)Google Scholar
  6. 6.
    Sahu, S.G., Chakraborty, N., Sarkar, P.: Coal–biomass co-combustion: an overview. Renew. Sustain. Energy Rev. 39, 575–586 (2014)CrossRefGoogle Scholar
  7. 7.
    Scurlock, J.M., Hall, D.O.: The contribution of biomass to global energy use. Biomass 21, 75–81 (1990)CrossRefGoogle Scholar
  8. 8.
    Peter, McKendry: Energy production from biomass (part 1): overview of biomass. Biores. Technol. 83(1), 37–46 (2002).  https://doi.org/10.1016/S0960-8524(01)00118-3 CrossRefGoogle Scholar
  9. 9.
    Abbasi, T., Abbasi, S.A.: Biomass energy and the environmental impacts associated with its production and utilization. Renew. Sustain. Energy Rev. 14(3), 919–937 (2010)CrossRefGoogle Scholar
  10. 10.
    Fernando, A.L., et al.: Environmental impact assessment of energy crops cultivation in Europe. Biofuels, Bioprod. Biorefin. 4(6), 594–604 (2010)Google Scholar
  11. 11.
    Kościk, B.: Rośliny energetyczne. Wydawnictwo Akademii Rolniczej w Lublinie, Lublin (2003)Google Scholar
  12. 12.
    Zabalza, B., Ignacio, A.V.C., Usón, A.A.: Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build Environ. 46(5), 1133–1140 (2011)Google Scholar
  13. 13.
    Zanuncio, A.J.V., et al.: Physical and colorimetric changes in Eucalyptus grandis wood after heat treatment. BioResources 9(1), 293–302 (2013)CrossRefGoogle Scholar
  14. 14.
    Frączek, J., Mudryk, K., Wróbel, M.: Klon jesionolistny Acer negundo L.- nowy potencjalny gatunek energetyczny. Wyd. Acta Agrophysica. 313–322 (2009)Google Scholar
  15. 15.
    Matthews, E.: Undying flame: the continuing demand for wood as fuel. Extract from pilot analysis of global ecosystems: forest ecosystems. Earth trends 2001 World Resources Institute (2000)Google Scholar
  16. 16.
    Szczukowski, S.: Wieloletnie rośliny energetyczne. Wyd. MULTICO Oficyna Wydawnicza (2011)Google Scholar
  17. 17.
    Juliszewski, T., Kwaśniewski, D., Mudryk, K., Wróbel, M.: Ocena wybranych parametrów biomasy pozyskanej z plantacji drzew szybkorosnących. Wyd. Inżynieria Rolnicza T.1, 89–97 (2012)Google Scholar
  18. 18.
    Deka, D., Saikia, P., Konwer, D.: Ranking of Fuelwood Species by Fuel Value Index, pp. 1499–1506 (2007). http://dx.doi.org/10.1080/15567030600820476
  19. 19.
    Laser, M., Lynd, L.R.: Comparative efficiency and driving range of light-and heavy-duty vehicles powered with biomass energy stored in liquid fuels or batteries. Proc. Natl. Acad. Sci. 111(9), 3360–3364 (2014)CrossRefGoogle Scholar
  20. 20.
    Saidur, R., et al.: A review on energy analysis of biomass based fuels. Renew. Sustain. Energy Rev. 16(2), 1217–1222 (2012)Google Scholar
  21. 21.
    Borkowska, H.: Zmiany zawartości suchej masy w plonie biomasy wierzby krzewiastej (wikliny) i ślazowca pensylwańskiego w zależności od terminu zbioru. UMCS, seria E. s. 60, 155–161 (2005)Google Scholar
  22. 22.
    Borkowska, H., Styk, B.: Ślazowiec pensylwański (Sida hermaphrodita Rusby). Uprawa i wykorzystanie. Wydanie II poprawione i uzupełnione. Wydawnictwo Akademii Rolniczej w Lublinie. Lublin (2006)Google Scholar
  23. 23.
    Gradziuk, P.: Energia odnawialna. Wydawnictwo, Wieś Jutra”. Płońsk (2008)Google Scholar
  24. 24.
    Strack, Z.: Transport i dystrybucja substancji pokarmowych, a wytwarzanie plonu rolniczego. Fizjologia plonowania roślin pod redakcją Ryszarda Gorskiego i Stanisława Grzesiuka. Wydawnictwo UWM. Olsztyn. s. 282–312 (2002)Google Scholar
  25. 25.
    Goel, V.L., Behl, H.M.: Fuelwood quality of promising tree species for alkaline soil sites in relation to tree age. Biomass Bioenergy 10(1), 57–61.  https://doi.org/10.1016/0961-9534(95)00053-4
  26. 26.
    Klašnja, B., Orlović, S., Galić, Z.: Comparison of different wood species as raw materials for bioenergy. South-East Eur. For. 4(2), 81–88 (2013)CrossRefGoogle Scholar
  27. 27.
    Abbot, P.G., Lowore, J.D.: Characteristics and management potential of some indigenous firewood species in Malawi. For. Ecol. Manage. 11, 111–121 (1999)CrossRefGoogle Scholar
  28. 28.
    Abbot, P.G., Lowore, P., Khofi, J., Werren, C.M.: Defining firewood quality: a comparison of quantitative and rapid appraisal techniques to evaluate firewood species from a southern African Savanna. Biomass Bioenergy 12(6), 429–437.  https://doi.org/10.1016/S0961-9534(96)00084-0
  29. 29.
    Bhatt, B.P., Todaria, N.P.: Fuelwood characteristics of some indian mountain species forest ecology and management. 47(1–4), 363–366.  https://doi.org/10.1016/0378-1127(92)90285-H
  30. 30.
    PN-EN ISO 14780:2011 Solid biofuels - Sample preparationGoogle Scholar
  31. 31.
    PN-EN ISO 18134-1:2015-11 Solid biofuels - Determination of moisture content - Oven dry method - Part 1: Total moisture - Reference methodGoogle Scholar
  32. 32.
    PN-EN ISO 18134-3:2015-11 Solid biofuels - Determination of moisture content - Oven dry method - Part 3: Moisture in general analysis sampleGoogle Scholar
  33. 33.
    PN-EN ISO 18122:2016-01 Solid biofuels - Determination of ash contentGoogle Scholar
  34. 34.
    PN-EN 14918:2010 Solid Biofuels - Determination of calorific valueGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Agrophysics, Faculty of Production and Power Engineering and AgrophysicsUniversity of Agriculture in KrakowKrakówPoland

Personalised recommendations