Innovative Production Technology of High Quality Pellets for Power Plants

  • Krzysztof Mudryk
  • Marek Wróbel
  • Marcin Jewiarz
  • Grzegorz Pelczar
  • Arkadiusz Dyjakon
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)


The paper presents the results of studies related to the development of quality pellet production technology for the power plants. Presented results shows that the addition of sulfur and kaolinite to the biomass does not significantly affect the basic quality parameters obtained from such pellet mixtures. There is a slight increase in ash value in these pellets, but this is directly related to the fact that kaolinite is a non-combustible mineral material. It has been shown that at the expense of increased ash content in the tested pellets, kaolinite addition virtually eliminates ash slag at all tested incineration temperatures. In the case of pellets from “pure” biomass, this unfavorable phenomenon has already occurred at 1000 °C. The results clearly show that independent of the amount of added sulfur (2 and 5%), the addition of 3% kaolinite effectively prevents ash from slagging in low temperature. Granulation of biomass, supplemented with additive to prevent slagging of ashes, should be regarded as effective and innovative technology of production of granular solid biofuels, which do not cause usual risk of boiler boiler heat exchange surfaces. This technology allows the generation of safe, solid biofuels from a wide range of biomass types available on the market.


Technical pellets ash slagging Kaoline Sulphur Corrosion 



This research was financed by the Ministry of Science and Higher Education of the Republic of Poland (statutory activities DS-3600/WIPiE/2017, Faculty of Production and Power Engineering, University of Agriculture in Krakow).


  1. 1.
    Demirbas, A.: Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energy Combust. Sci. 31(2), 171–192 (2005)CrossRefGoogle Scholar
  2. 2.
    Kuramochi, H., Wu, W., Kawamoto, K.: Prediction of the behaviors of H 2 S and HCl during gasification of selected residual biomass fuels by equilibrium calculation. Fuel 84(4), 377–387 (2005)CrossRefGoogle Scholar
  3. 3.
    Ściążko, M., Zuwała, J., Pronobis, M.: Zalety i wady współspalania biomasy w kotłach energetycznych na tle doświadczeń eksploatacyjnych pierwszego roku współspalania biomasy na skalę przemysłową, Energetyka i Ekologia, 2, s. 207–220 (2006)Google Scholar
  4. 4.
    Król, D., Łach, J., Poskrobko, S.: O niektórych problemach związanych z wykorzystaniem biomasy nieleśnej w energetyce, Energetyka, 1, s. 53–62 (2010)Google Scholar
  5. 5.
    Ściążko, M., Zuwała, J., Pronobis, M.: Współspalanie biomasy i paliw alternatywnych, Pr. zbior. pod. red., Wyd. IChPW i Politechniki Śl., Zabrze (2007)Google Scholar
  6. 6.
    Hardy, T., Kordylewski, W., Mościcki, K.: Zagrożenie korozją chlorkową w wyniku spalania i współspalania biomasy w kotłach, Archiwum Spalania, s. 181–195 (2009)Google Scholar
  7. 7.
    Pronobis, M.: Modernizacja kotłów energetycznych. WNT, Warszawa (2002)Google Scholar
  8. 8.
    Grabke, H.J., Reese, E., Spiegel, M.: The effect of chlorides, hydrogen chloride and sulfur dioxide in the oxidation of steels below deposits. Corros. Scie. 37, 1023–1043 (1995)CrossRefGoogle Scholar
  9. 9.
    Born, M.: Cause and risk evaluation for high-temperature chlorine corrosion. VGB PowerTech, No. 5 (2005), pp. 107–111Google Scholar
  10. 10.
    Bolewski, A.: Mineralogia szczegółowa. Wydawnictwa Geologiczne, Warszawa (1975)Google Scholar
  11. 11.
    Tran, K.Q., Iisa, K., Steenari, B.M., Lindqvist, O.: A kinetic study of gaseous alkali capture by kaolin in the fixed bed reactor equipped with an alkali detector. Fuel 84, 169–175 (2005)CrossRefGoogle Scholar
  12. 12.
    Öhman, M., Nordin, A.: The role of kaolin in prevention of bed agglomeration during fluidized bed combustion of biomass fuels. Energy Fuels 14(3), 618–624 (2000)CrossRefGoogle Scholar
  13. 13.
    Wei, X., Schnell, U., Hein, K.R.G.: Behaviour of gaseous chlorine and alkali metals during biomass thermal utilization. Fuel 84 (2005)CrossRefGoogle Scholar
  14. 14.
    Boman, C., Bostrom, D., Ohman, M.: Effect of fuel additive sorbents (kaolin and calcite) on aerosol particle emission and characteristics during combustion of pelletized woody biomass. In: 16th European Biomass Conference & Exhibition, 2–6 June 2008, Valencia, SpainGoogle Scholar
  15. 15.
    Konsomboon, S., Pipatmanomai, S., Madhiyanon, T., Tia, S.: Effect of kaolin addition on ash characteristics of palm empty fruit bunch (EFB) upon combustion. Appl. Energy 88, 298–305 (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Production and Power EngineeringUniversity of Agriculture in KrakowKrakowPoland
  2. 2.Nowy Projekt Grzegorz PelczarKrakowPoland
  3. 3.Wroclaw University of Environment and Life SciencesWroclawPoland

Personalised recommendations