Influence of Parameters of the Torrefaction Process on the Selected Parameters of Torrefied Woody Biomass

  • Marek Wróbel
  • Joanna Hamerska
  • Marcin Jewiarz
  • Krzysztof Mudryk
  • Marzena Niemczyk
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

The aim of this study was to determine the effect of time and temperature of torrefaction on selected parameters of torrefied woody biomass. The research material was willow and black locust biomass. First species representing the tree of soft wood and second is representative of hardwood trees. The selected species belong to a group of trees cultivated on energy purposes in so-called short rotation. The biomass samples were dried to a humidity of 10% and then was specified the calorific value, heat of combustion, specific density, ash content and volatiles matter. Characterized samples were subjected to torrefaction process in a special research reactor. In the study was planned the torrefaction temperature range 200–300 °C and the duration of the process in the range of 1–3 h which resulted in products of biomass torrefaction about the different degree of the carbonization, which were characterized by the same parameters as before biomass torrefaction.

Keywords

Biomass Energy crops Torrefaction Willow Black locust 

Notes

Acknowledgements

This research was financed by the Ministry of Science and Higher Education of the Republic of Poland (statutory activities DS-3600/WIPiE/2017, Faculty of Production and Power Engineering, University of Agriculture in Krakow).

References

  1. 1.
    Bajpai, P.: Pretreatment of Lignocellulosic Biomass for Biofuel Production. Springer (2016)Google Scholar
  2. 2.
    Rybak, W.: Spalanie i współspalanie biopaliw stałych. ISBN 83-7085-938-0. Oficyna Wydawnicza Politechniki Wrocławskiej. Wrocław (2006)Google Scholar
  3. 3.
    Bergman, P.C.A., Prins, M.J., Boersma, A.R., Ptasinski, K.J., Kiel, J.H.A., Janssen, F.J.J.G.: Torrefaction for Entired—Flow Gasification of Biomass (2004). https://www.ecn.nl/publications//PdfFetch.aspx?nr=ECN-RX–04-046. Last accessed 12 May 2017
  4. 4.
    Kordylewski, W. (ed.): Spalanie i paliwa. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław (2008)Google Scholar
  5. 5.
    Ściążko, M., Zuwała, J., Pronobis, M.: Współspalanie biomasy i paliw alternatywnych w energetyce. ISBN 978-83-913434-3-2. Wydawnictwo IChPW i Politechniki Śląskiej, Gliwice (2008)Google Scholar
  6. 6.
    Latawiec, A.E., Królczyk, J.B., Kuboń, M., Szwedziak, K., Drosik, A., Polańczyk, E., Grotkiewicz, K., Strassburg, B.B.N.: Willingness to adopt biochar in agriculture: the producer’s perspective. Sustainability 9(4), 655 (2017).  https://doi.org/10.3390/su9040655. PDF Version: http://www.mdpi.com/2071-1050/9/4/655/pdf
  7. 7.
    Latawiec, A.E., Peake, L., Baxter, H., Cornelissen, G., Grotkiewicz, K., Hale, S., Królczyk, J.B., Kubon, M., Łopatka, A., Medyńska-Juraszek, A., Reid, B., Siebielec, G., Sohi, S.P., Spiak, Z., Strassburg, B.B.N.: A reconnaissance-scale GIS-based multicriteria decision analysis to support sustainable biochar use: Poland as a case study. J. Environ. Eng. Landscape Manage. 25(02), (2017). https://doi.org/10.3846/16486897.2017.1326924
  8. 8.
    Uslu, A.: Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Energy 33(8), 1206–1223 (2008)CrossRefGoogle Scholar
  9. 9.
    Prins, M.J., Ptasiński, K.J., Janssen, F.: Torrefaction of wood. Part 1. Weight loss kinetics. J. Anal. Appl. Pyrol. 77(1), 35–40 (2006). https://doi.org/10.1016/j.jaap.2006.01.002
  10. 10.
    Kasparbauer, R.D.: The Effects of Biomass Pretreatments on the Products of Fast Pyrolysis (2009). http://lib.dr.iastate.edu/etd/10064. Last accessed 12 May 2017
  11. 11.
    Bergman, P.C.A.: Combined Torrefaction and Pelletisation: The TOP Process. ECN Publication. ECN-C-05-073 (2005). https://www.ecn.nl/docs/library/report/2005/c05073.pdf. Last accessed 12 May 2017
  12. 12.
    Yoder, J.: Economic tradeoff between biochar and bio-oil production via pyrolysis. Biomass Bioenergy 35(5), 1851–1862 (2011)CrossRefGoogle Scholar
  13. 13.
    Kiel, J.: Torrefaction for upgrading biomass into commodity fuel—status and ECN technology development. In: EUBIONET III Workshop Bioenergy and Forest Industry Proceedings (2011). ftp://ftp.ecn.nl/pub/www/library/report/2011/m11028.pdf. Last accessed 15 May 2017
  14. 14.
    Ścisłowska, M., Włodarczyk, R., Kobyłecki, R., Bis, Z.: Biochar to improve the quality and productivity of soils. J. Ecol. Eng. 16(3), 31–35 (2015).  https://doi.org/10.12911/22998993/2802 Google Scholar
  15. 15.
    Prins, M.J., Ptasinski, K.J., Janssen, F.: Torrefaction of wood. Part 2. Analysis of products. J. Anal. Appl. Pyrol. 77(1), 28–34 (2006).  https://doi.org/10.1016/j.jaap.2006.01.001 CrossRefGoogle Scholar
  16. 16.
    Bergman, P.C., Kiel, J.H.: Torrefaction for biomass upgrading. In: 14th European Biomass Conference Proceedings, Paris, France (2005, October), pp. 17–21Google Scholar
  17. 17.
    PN-EN ISO 18134-3:2015-11 Solid biofuels. Determination of moisture content. Oven dry method. Part 3: Moisture in general analysis sampleGoogle Scholar
  18. 18.
    PN-EN 14918:2010 Solid biofuels. Determination of calorific valueGoogle Scholar
  19. 19.
    PN-EN ISO 18122:2016-01 Solid biofuels. Determination of ash contentGoogle Scholar
  20. 20.
    PN-EN ISO 18123:2016-01. Solid fuels. Determination of volatile content by gravimetric methodGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Production and Power EngineeringUniversity of Agriculture in KrakowKrakowPoland
  2. 2.Department of Silviculture and Tree GeneticsForest Research InstituteRaszynPoland

Personalised recommendations