Influence of Storing Miscanthus x gigantheus on Its Mechanical and Energetic Properties

  • Adrian Knapczyk
  • Sławomir Francik
  • Artur Wójcik
  • Grzegorz Bednarz
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)


The purpose of the study was to analyze the effect of storage of a Giant miscanthus on its mechanical and energy properties. The research material came from an experimental plantation of the Faculty of Production Engineering and Energetics of the University of Agriculture in Cracow. It was compared to plant material stored under cover where it was protected from atmospheric agents such as rain, snow and wind. The studies compared energy properties such as calorific value, moisture content and ash content. The second part of the research was used to determine selected mechanical properties—unit destructive force. Measured calorific value in two groups was: storage = Yes: 16,568 [kJ/kg], storage = No: 15,897 [kJ/kg]. Mean values of Pj (unitary destructive force) for stored and not-stored miscanthus were different. For X1—storage = Yes Pj = 48.27 [N] and for storage = No Pj = 40.73 [N].


Giant miscanthus Mechanical strength Energy properties Calorific value Biomass 



This research was financed by the Ministry of Science and Higher Education of the Republic of Poland (statutory activities DS-3600/WIPiE/2017, Faculty of Production and Power Engineering, University of Agriculture in Krakow).


  1. 1.
    Beringer, T., Lucht, W., Schaphoff, S.: Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy 3, 299–312 (2011).
  2. 2.
    Angelini, L.G., Ceccarini, L., Di Nassa, N.N.O., Bonari, E.: Comparison of Arundo donax L. and Miscanthus x giganteus in a long-term field experiment in Central Italy: analysis of productive characteristics and energy balance. Biomass Bioenergy 33(4), 635–643 (2009).
  3. 3.
    Barney, J.N., Mann, J.J., Kyser, G.B., DiTomaso, J.M.: Assessing habitat susceptibility and resistance to invasion by the bioenergy crops switchgrass and Miscanthus x giganteus in California. Biomass Bioenergy 40, 143–154 (2012).
  4. 4.
    Mann, J.J., Barney, J.N., Kyser, G.B., Di Tomaso, J.M.: Miscanthus x giganteus and Arundo donax shoot and rhizome tolerance of extreme moisture stress. Global Change Biol. Bioenergy 5(6), 693–700 (2013a).
  5. 5.
    Mann, J.J., Kyser, G.B., Barney, J.N., DiTomaso, J.M.: Assessment of aboveground and belowground vegetative fragments as propagules in the bioenergy crops Arundo donax and Miscanthus x giganteus. Bioenergy Res. 6(2), 688–698 (2013b).
  6. 6.
    Smith, R., Slater, F.M.: The effects of organic and inorganic fertilizer applications to Miscanthus x giganteus, Arundo donax and Phalaris arundinacea, when grown as energy crops in Wales, UK. Global Change Biol. Bioenergy 2(4), 169–179 (2010).
  7. 7.
    Smith, R., Slater, F.M.: Mobilization of minerals and moisture loss during senescence of the energy crops Miscanthus x giganteus, Arundo donax and Phalaris arundinacea in Wales, UK. Global Change Biol. Bioenergy 3(2), 148–157 (2011).
  8. 8.
    Triana, F., Di Nasso, N.N.O., Ragaglini, G., Roncucci, N., Bonari, E.: Evapotranspiration, crop coefficient and water use efficiency of giant reed (Arundo donax L.) and miscanthus (Miscanthus x giganteus Greef et Deu.) in a Mediterranean environment. Global Change Biol. Bioenergy 7(4), 811–819 (2015).
  9. 9.
    Kolowca, J., Wróbel, M., Baran, B.: Mechanical model of Miscanthus giganteus grass blades/Model mechaniczny źdźbła trawy Miscanthus giganteus (in Polish). Inżynieria Rolnicza 6(115), s. 149–154 (2009)Google Scholar
  10. 10.
    Kolowca, J., Wróbel, M.: Mechanical strength of the grass blade of Miscanthus giganteus/Wytrzymałość mechaniczna źdźbła trawy Miscanthus giganteus (in Polish). Inżynieria Rolnicza 4(122), s. 121–126 (2010)Google Scholar
  11. 11.
    Lewandowski, I., Clifton-Brown, J.C., Scurlock, J.M.O., Huisman, W.: Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19, 209–227 (2000)Google Scholar
  12. 12.
    Hastings, A., Clifton-Brown, J., Wattenbach, M., Mitchell, C.P., Stampfl, P., Smith, P.: Future energy potential of Miscanthus in Europe. GCB Bioenergy 1, 180–196 (2009).
  13. 13.
    PN-EN ISO 18134-1:2017-03Google Scholar
  14. 14.
    PN-EN ISO 18134-3:2017-03Google Scholar
  15. 15.
    Cieślikowski, B., Juliszewski, T., Łapczyńska-Kordon, B.: Utilisation of bio-fuel technology by-products for power production purposes/Utylizacja na cele energetyczne produktów ubocznych technologii biopaliwowej (in Polish). Inżynieria Rolnicza 12 (2006)Google Scholar
  16. 16.
    Komorowicz, M., Wróblewska, H., Pawłowski, J.: Skład chemiczny i właściwości energetyczne biomasy z wybranych surowców odnawialnych (in Polish). Ochrona Środowiska i Zasobów Naturalnych, nr 40, s.402–410 (2009)Google Scholar
  17. 17.
    Król, D., Łach, J., Poskrobko, S.: O niektórych problemach związanych z wykorzystaniem biomasy nieleśnej w energetyce (in Polish). Energetyka, Nr 1, (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Adrian Knapczyk
    • 1
  • Sławomir Francik
    • 1
  • Artur Wójcik
    • 1
  • Grzegorz Bednarz
    • 2
  1. 1.Department of Mechanical Engineering and Agrophysics, Faculty of Production and Power EngineeringUniversity of Agriculture in KrakowKrakówPoland
  2. 2.Department of Forest Pathology, Mycology and Tree Physiology, Faculty of Forestry, Institute of Forest Ecosystem ProtectionUniversity of Agriculture in KrakowKrakówPoland

Personalised recommendations