Possibility to Utilize Fish Processing By-Products in the Context of Management of Non-renewable Resources

  • Marcin Niemiec
  • Krzysztof Mudryk
  • Jakub Sikora
  • Anna Szeląg-Sikora
  • Monika Komorowska
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)


Fish processing generates considerable amounts of waste which constitutes a potential threat to the environment. The aim of this paper was to assess the possibility to use processing waste for anaerobic digestion and to use the generated digestate for fertilization purposes. This research involved evaluation of chemical composition of waste from a carp processing plant and of the digestate after methane fermentation. The content of dry matter, organic carbon, nitrogen, and other macroelements was determined in the samples. Moreover, the content of trace elements was determined. Dry matter content in the studied waste was 40%. Nitrogen content was approximately 5.56%, phosphorus—1.758%, calcium—0.4%, whereas mean potassium content was 0.502 g kg−1. As a result of conducting methane fermentation, a reduction in nitrogen content by about 50% and a considerable increase in quantity of almost all elements were observed. A high zinc content was recorded in the digestate, whereas concentration of other microelements was at a level close to the one in natural fertilizers. Concentrations of heavy metals did not exceed permissible values for organic fertilizers. The studied material can be a component for fertilizer production, and its fertilizing value depends mostly on nitrogen and phosphorus content.


Fish processing waste Anaerobic digestion Digestate Organic fertilizers 


  1. 1.
    Pivnenko, K., Eriksen, M.K., Martín-Fernández, J.A., Eriksson, E., Astrup, T.F.: Recycling of plastic waste: presence of phthalates in plastics from households and industry. Waste Manage. 54, 44–52 (2016)CrossRefGoogle Scholar
  2. 2.
    Frąc, M., Ziemiński, K.: Methane fermentation process for utilization of organic waste. Int. Agrophys. 26(3), 317–330 (2012)CrossRefGoogle Scholar
  3. 3.
    Sikora, J., Szeląg-Sikora, A., Cupiał, M., Niemiec, M., Klimas, A.: Biogas production potential for energy purposes in ecological farms. (Pl) Proc. ECOpole 8(1), 279–287 (2014)Google Scholar
  4. 4.
    Tampio, E., Marttinen, S., Rintala, J.: Liquid fertilizer products from anaerobic digestion of food waste: mass, nutrient and energy balance of four digestate liquid treatment systems. J. Clean. Prod. 125, 22–32 (2016)CrossRefGoogle Scholar
  5. 5.
    Velis, C.A., Longhurst, P.J., Drew, G.H., Smith, R., Pollard, S.J.T.: Biodrying for mechanical–biological treatment of wastes: a review of process science and engineering. Bioresour. Technol. 100, 2747–2761 (2009)CrossRefGoogle Scholar
  6. 6.
    Bustamante, M.A., Alburquerque, J.A., Restrepo, A.P., de la Fuente, C., Paredes, C., Moral, R., Bernal, M.P.: Co-composting of the solid fraction of anaerobic digestates, to obtain added-value materials for use in agriculture. Biomass Bioenerg. 43, 26–35 (2012)CrossRefGoogle Scholar
  7. 7.
    Lalak, J., Kasprzycka, A., Paprota, E., Tys, J., Murat, A.: Development of optimum substrate compositions in the methane fermentation process. Int. Agrophys. 29(3), 313–321 (2015)CrossRefGoogle Scholar
  8. 8.
    Arthur, R., Baidoo, M.F., Antwi, E.: Biogas as a potential renewable energy source: a Ghanaian case study. Renew. Energy 36, 1510–1516 (2011)CrossRefGoogle Scholar
  9. 9.
    De Souza, S.N.M., Wernacke, I., Marques, C.A., Bariccatti, R.A., Santos, R.F.S., Nogueira, C.E.C., Bassegio, D.: Electric energy micro-production in a rural property using biogas as primary source. Renew. Sustain. Energy Rev. 28, 385–391 (2013)CrossRefGoogle Scholar
  10. 10.
    Karellas, S., Boukis, I., Kontopoulos, G.: Development of an investment decision tool for biogas production from agricultural waste. Renew. Sustain. Energy Rev. 14(4), 1273–1282 (2010)CrossRefGoogle Scholar
  11. 11.
    Bhagwat, P.K., Dandge, P.B.: Isolation, characterization and valorizable applications of fish scale collagen in food and agriculture industries. Biocatal. Agric. Biotechnol. 7, 234–240 (2016)Google Scholar
  12. 12.
    Ghaly, A.E., Ramakrishnan, V.V., Brooks, M.S., Budge, S.M., Dave, D.: Fish processing wastes as a potential source of proteins, amino acids and oils: a critical review. J. Microb. Biochem. Technol. 5(4), 107–129 (2013)Google Scholar
  13. 13.
    Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives (Text with EEA relevance)Google Scholar
  14. 14.
    Alkanok, G., Demirel, B., Onay, T.T.: Determination of biogas generation potential as a renewable energy source from supermarket wastes. Waste Manage. 34(1), 134–140 (2014)CrossRefGoogle Scholar
  15. 15.
    Kasprzycka, A., Lalak, J., Tys, J.: Impact of fragmentation on biogas production from plant biomass. Acta Agrophys. 22(2), 139–149 (2015)Google Scholar
  16. 16.
    Koszel, M., Lorencowicz, E.: Agricultural use of biogas digestate as a replacement fertilizers. Agric. Agric. Sci. Proc. 7, 119–124 (2015)Google Scholar
  17. 17.
    Tampio, E., Ervasti, S., Rintal, J.: Characteristics and agronomic usability of digestates from laboratory digesters treating food waste and autoclaved food waste. J. Clean. Prod. 94, 86–92 (2015)CrossRefGoogle Scholar
  18. 18.
    Regulation of the Minister of the environment of 9 December 2014 on waste catalogue (Journal of Laws from 2014 item 1923)Google Scholar
  19. 19.
    Regulation of the Minister of Environment on R10 recovery operation of April 5 2011 (Journal of Laws from 2011 item 476)Google Scholar
  20. 20.
    Vaneeckhaute, C., Meers, E., Michels, E, Buysse, EJ., Tack, F.M.G.: Ecological and economic benefits of the application of bio-based mineral fertilizers in modern agriculture. Biomass Bioenerg. 49, 239–248 (2013)Google Scholar
  21. 21.
    Fangueiro, D., Surgy, S., Fraga, I., Monteiro, F.G., Cabral, F., Coutinho, J.: Acidification of animal slurry affects the nitrogen dynamics after soil application. Geoderma 281, 30–38 (2016)CrossRefGoogle Scholar
  22. 22.
    Act of 10 July 2007 on Fertilizer and Fertilizing item 1033Google Scholar
  23. 23.
    Bustamante, M.A., Restrepo, A.P., Alburquerque, J.A., Pérez-Murcia, M.D., Paredes, C., Moral, R., Bernal, M.P.: Recycling of anaerobic digestates by composting: effect of the bulking agent used. J. Clean. Prod. 47, 61–69 (2013)CrossRefGoogle Scholar
  24. 24.
    Akbarian, M.M., Sharif Abad, H.H., Modafebehzadi, N., Bagheripour, M.A.: The effects of chemical fertilizers and cow manure on quantity and quality saffron characteristics in Dehbakri Bam Region. Ann. Biol. Res. 4(6), 361–365 (2013)Google Scholar
  25. 25.
    Xiu, S., Shahbazi, A., Shirley, V.B., Wang, L.: Swine manure/Crude glycerol co-liquefaction: physical properties and chemical analysis of bio-oil product. Bioresour. Technol. 102, 1928–1932 (2011)CrossRefGoogle Scholar
  26. 26.
    Huang, G., Han, L., Yang, Z., Wang, X.: Evaluation of the nutrient metal content in Chinese animal manure compost using near infrared spectroscopy (NIRS). Bioresour. Technol. 99, 8164–8169 (2008)CrossRefGoogle Scholar
  27. 27.
    Ko, H.J., Ki, K.Y., Kim, H.T., Kim, C.N., Umeda, M.: Evaluation of maturity parameters and heavy metal contents in composts made from animal manure. Waste Manage. 28, 813–820 (2008)CrossRefGoogle Scholar
  28. 28.
    Nicholson, F.A., Chambers, B.J., Williams, J.R., Unwin, R.J.: Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresour. Technol. 99, 8164–8169 (1999)Google Scholar
  29. 29.
    Ihnat, M., Fernandes, L.: Trace elemental characterization of composed poultry manure. Bioresour. Technol. 57, 143–156 (1996)CrossRefGoogle Scholar
  30. 30.
    Weiland, P.: Biomass digestion in agriculture: a successful pathway for the energy production and waste treatment in Germany. Eng. Life Sci. 6, 302–309 (2006)CrossRefGoogle Scholar
  31. 31.
    Sapp, M., Harrison, M., Hany, U., Charlton, A., Thwaites, R.: Comparing the effect of digestate and chemical fertiliser on soil bacteria. Appl. Soil. Ecol. 86, 1–9 (2015)CrossRefGoogle Scholar
  32. 32.
    Garfí, M., Gelman, P., Comas, J., Carrasco, W., Ferrer, I.: Agricultural reuse of the digestate from low-cost tubular digesters in rural Andean communities. Waste Manage. 31, 2584–2589 (2011)CrossRefGoogle Scholar
  33. 33.
    Voelkner, A., Holthusen, D., Ellerbrock, R., Horn, R.: Quantity of hydrophobic functional CH-groups—decisive for soil water repellency caused by digestate amendment. Int. Agrophys. 29(2), 247–255 (2015)CrossRefGoogle Scholar
  34. 34.
    Baker, L.R., White, P.M., Pierzynski, G.M.: Changes in microbial properties after manure, lime, and bentonite application to a heavy metal-contaminated mine waste. Appl. Soil. Ecol. 48, 1–10 (2011)CrossRefGoogle Scholar
  35. 35.
    Govasmark, E., Stäb, J., Holen, B., Hoornstra, D., Nesbakk, T., Salkinoja-Salonen, M.: Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use. Waste Manage. 31(12), 2577–2583 (2011)CrossRefGoogle Scholar
  36. 36.
    Lehtomaki, A., Bjornsson, L.: Two-stage anaerobic digestion of energy crops: methane production, nitrogen mineralisation and heavy metal mobilization. Environ. Technol. 27, 209–218 (2006)CrossRefGoogle Scholar
  37. 37.
    Boalt, E., Miller, A., Dahlgren, H.: Distribution of cadmium, mercury, and lead in different body parts of Baltic herring (Clupea harengus) and perch (Perca fluviatilis): implications for environmental status assessments. Marine Pollut. Bull. 78(1–2), 130–136 (2014)CrossRefGoogle Scholar
  38. 38.
    Dhaneesh, K.V., Gopi, M., Ganeshamurthy, R., Kumar, T.T.A., Balasubramanian, T.: Bio-accumulation of metals on reef associated organisms of Lakshadweep Archipelago. Food Chem. 131(3), 985–991 (2012)CrossRefGoogle Scholar
  39. 39.
    Niemiec, M.: Accumulation of zinc in water, sediments and bleak fish (Alburnus alburnus L.) in the ecosystem of the Dunajec River. J. Elementol. 21(1), 173–184 (2016)Google Scholar
  40. 40.
    Martínez, E.J., Fierro, J., Sánchez, M.E., Gómez, X.: Anaerobic co-digestion of FOG and sewage sludge: study of the process by Fourier transform infrared spectroscopy. Int. Biodeterior. Biodegradation 75, 1–6 (2012)CrossRefGoogle Scholar
  41. 41.
    Walker, L., Charles, W., Cord-Ruwisch, R.: Comparison of static, in-vessel composting of MSW with thermophilic anaerobic digestion and combinations of the two processes. Bioresour. Technol. 100(16), 3799–3807 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Marcin Niemiec
    • 1
  • Krzysztof Mudryk
    • 2
  • Jakub Sikora
    • 2
  • Anna Szeląg-Sikora
    • 2
  • Monika Komorowska
    • 3
  1. 1.Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and EconomicsUniversity of Agriculture in KrakowKrakowPoland
  2. 2.Faculty of Production and Power EngineeringUniversity of Agriculture in KrakowKrakowPoland
  3. 3.Department of Vegetable and Medicinal Plants, Faculty of Biotechnology and HorticultureUniversity of Agriculture in KrakowKrakowPoland

Personalised recommendations