An Innovative Air—Water Heat Pump with Ecological Refrigerant

  • Grzegorz Pełka
  • Wojciech Luboń
  • Daniel Malik
  • Krzysztof Kołton
  • Wojciech Kołton
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)


The heat pump market is growing year on year and more than 20,000 units were sold in 2015 alone. The majority were air to water heat pumps for heating or for only warming up domestic hot water utilizing inside air. The project ordered by Kołton S.C. company, co-funded by Regional Operating Programme 2014–2020 of the Lesser Poland Region, was conducted in the AGH-UST Educational and Research Laboratory of Renewable Energy Sources and Energy Saving in Miękinia and had the following goals: defining the type of air-water heat pumps, determining the refrigerant, design, developed and testing the prototype. According to EU F-gas regulations, the use of refrigerant with high GWP (Global Warming Potential) will be limited. It was one of the reasons to develop a heat pump using an environmentally friendly and natural refrigerant—R290. The type of construction used in the heat pump is monobloc, which simplifies the installation. It uses components dedicated for R290, such as a scroll compressor, evaporator and condenser, 4-way valve, electronic expansion valve, etc. The first tests of the device gave the following results: for an air temperature of 2 °C and a water temperature of 35 °C the heating power was 13.2 kW and COP was 3.69. Further tests will be conducted to optimize the parameters of the heat pump and the controlling algorithm.


Air-water heat pump Ecological refrigerant COP 



The paper was prepared under AGH-UST statutory research grant No. in cooperation with PPHU Kołton Wojciech Kołton, Krzysztof Kołton.


  1. 1.
    Dobrzyński, M.: Rewolucje w czynnikach chłodniczych. Przemysł Spożywczy, tom 67 (2013)Google Scholar
  2. 2.
    Technical information, Daikin: R-32 Czynnik chłodniczy następnej generacji do klimatyzatorów i pomp ciepła (2015)Google Scholar
  3. 3.
    Gao, B., Chen, Z., Gao, Q.: Research of R290 compressor effect on RAC system charge amount. In: International Compressor Engineering Conference. Paper 2096 (2012).
  4. 4.
    Lampugnani, G., Zgliczynski, M.: R290 as a substitute of R502 and R22 in commercial refrigeration and air conditioning. In: International Compressor Engineering Conference. Paper 1087 (1996).
  5. 5.
    Palm, B.: Heat pumps working with propane. Next Heat Pump Generation Project. The final workshop of the Next Heat Pump Project (NxtHPG), Milan (2016)Google Scholar
  6. 6.
    Zottl, A.: Project final report. Next Generation heat pump for retrofitting buildings, GReenHP (2016)Google Scholar
  7. 7.
    Fraccari, E.: Compressor technology outlook in the HP market. A tiered approach. In: European Heat Pump Summit Symposium +EXPO, Nuremberg (2015)Google Scholar
  8. 8.
    Maul, J.: Environment-friendly heating with R290 heat pumps. ATMOEUsphere—solutions for Europe—natural refrigerants (2013)Google Scholar
  9. 9.
    PORT PC: Spektakularny wzrost rynku powietrznych pomp ciepła w 2015 roku (2015).
  10. 10.
    Choudharia, C.S., Sapalib S.N.: Performance investigation of natural refrigerant R290 as a substitute to R22 in refrigeration systems. Energy Proc. 109, 346–352 (2017)Google Scholar
  11. 11.
    Yu, Ch.Ch., Teng, T.P.: Retrofit assessment of refrigerator using hydrocarbon re-frigerants. Appl. Thermal Eng. 66, 507–518 (2014)Google Scholar
  12. 12.
    Miyara, A.: Condensation of hydrocarbons—a review. Int. J. Refrig. 31, 621–632 (2008)Google Scholar
  13. 13.
    Granryd, E.: Hydrocarbons as refrigerants—an overview. Int. J. Refrig. 24, 15–24 (2001)Google Scholar
  14. 14.
    Palm, B.: Hydrocarbons as refrigerants in small heat pump and refrigeration systems—a review. Int. J. Refrig. 31, 552–563 (2008)Google Scholar
  15. 15.
    Shrivastava A.P., Choudhari Chandrakishor, S.: Evaluation of refrigerant R290 as a replacement to R22. Int. J. Innovative Res. Sci. Eng. 2(3) (2016)Google Scholar
  16. 16.
    Technical documentation Inventec—R290, Last accessed 04 June 2017
  17. 17.
    PN- EN 378-1:2008 Instalacje ziębnicze i pompy ciepła—Wymagania dotyczące bezpieczeństwa i ochrony środowiska—Część 1: Wymagania podstawowe, definicje, klasyfikacja i kryteria wyboruGoogle Scholar
  18. 18.
    PN-EN 14511-3:2013-12—Klimatyzatory, ziębiarki cieczy i pompy ciepła ze sprężarkami o napędzie elektrycznym, do grzania i ziębienia—Część 3:Metody badańGoogle Scholar
  19. 19.
    PN-EN 14825:2016-08 - Klimatyzatory, agregaty do chłodzenia cieczy i pompy ciepła ze sprężarkami o napędzie elektrycznym, do grzania i ziębienia—Badanie i ocena w warunkach niepełnego obciążenia oraz obliczanie wydajności sezonowejGoogle Scholar
  20. 20.
    Lachman, P.: Metodyka obliczenia OZE z pomp ciepła zgodnie z najnowszymi wytycznymi UE, InstalReporter, 03/2013, pp. 42–47 (2013)Google Scholar
  21. 21.
    Miara, M., Gunther, D., Kramer, T., Oltersdorf, T., Wapler, J.: Heat pump efficiency: analysis and evaluation of heat pump efficiency in real-life conditions (2011)Google Scholar
  22. 22.
    Nordman, R., Zottl, A.: SEPEMO-build—a European project on seasonal performance factor and monitoring for heat pump systems in the building sector (2011)Google Scholar
  23. 23.
    Technical documentations of scroll compressors, Copeland, Last accessed 04 June 2017

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Grzegorz Pełka
    • 1
  • Wojciech Luboń
    • 1
  • Daniel Malik
    • 1
  • Krzysztof Kołton
    • 2
  • Wojciech Kołton
    • 2
  1. 1.Faculty of Geology, Geophysics and Environmental ProtectionAGH University of Science and TechnologyKrakówPoland
  2. 2.PPHU KOŁTON Wojciech Kołton, Krzysztof KołtonJabłonkaPoland

Personalised recommendations