Analysis of Potential Related to Grass-Derived Biomass for Energetic Purposes

  • Andrzej Bryś
  • Joanna Bryś
  • Szymon Głowacki
  • Weronika Tulej
  • Paweł Zajkowski
  • Mariusz Sojak
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

According to the climate energy package of the EU, biomass is and will be the most important source of energy of all renewable resources of energy (RRE). Experts from the European Association of Biomass estimate that it will be caused by tree-fold increase in demand for this source of energy (Gradziuk in Gospodarcze znaczenie i możliwości wykorzystania słomy na cele energetyczne w Polsce. Wyd. Instytut Uprawy Nawożenia i Gleboznawstwa - Państwowy Instytut Badawczy w Puławach, 2015, [1]). In Poland, the wastelands cover 475,000 ha (Central Statistical Office of Poland. Statistical Yearbook of Agriculture, 2016, [2]), and could be used as a source of biomass, e.g. for biogas plants or for briquette production. Waste grass from green areas such as parks, gardens, garden plots, and biomass from roadsides (motorways and highways) should also be taken into account. The amount of waste changes annually as it depends on vegetation, weather, method of green areas and gardens nurturing. Green waste is mainly produced from spring till autumn, and the amount produced during these seasons is much higher than in winter (Jędrczak, Biologiczne przetwarzania odpadów. Wydawnictwo Naukowe PWN, Warszawa, 2007, [3]). Therefore, grass briquetting is desirable as briquetted grass may be used throughout the year. One of the most important stages of briquette production is drying raw material, i.e. grass.

Keywords

Biomass Grass Drying Biofuels Briquettes 

References

  1. 1.
    Gradziuk, P.: Gospodarcze znaczenie i możliwości wykorzystania słomy na cele energetyczne w Polsce. Wyd. Instytut Uprawy Nawożenia i Gleboznawstwa - Państwowy Instytut Badawczy w Puławach (2015)Google Scholar
  2. 2.
    Central Statistical Office of Poland. Statistical Yearbook of Agriculture (2016)Google Scholar
  3. 3.
    Jędrczak, A.: Biologiczne przetwarzania odpadów. Wydawnictwo Naukowe PWN, Warszawa (2007)Google Scholar
  4. 4.
    Kisiel, R., Wasiuta, A.: Stan i rozwój energetyki wiatrowej w unii europejskiej. J. Agribus. Rural Dev. 1(11), 141–154 (2009)Google Scholar
  5. 5.
    Szlachta, J.: Aspekty wykorzystania biomasy na cele energetyczne cz.1, Ekonauta, PCEPPiU, Wrocław 25–26 (2003)Google Scholar
  6. 6.
    Central Statistical Office of Poland. Energy from renewable sources in 2015 (2016)Google Scholar
  7. 7.
    Kobayashi, Y., Yokoo, K.: Practical use of solar-dehumidification dry kiln. In: 5th International IUFRO Wood Drying Conference, Quebec City, Kanada (1996)Google Scholar
  8. 8.
    Loo, S., Koppejan, J.: The Handbook of Biomass Combustion and Co-firing. Earthscan, London (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Andrzej Bryś
    • 1
  • Joanna Bryś
    • 2
  • Szymon Głowacki
    • 1
  • Weronika Tulej
    • 1
  • Paweł Zajkowski
    • 1
  • Mariusz Sojak
    • 1
  1. 1.Katedra Podstaw Inżynierii, Wydział Inżynierii ProdukcjiSGGWWarsawPoland
  2. 2.Wydział Nauk o Żywności, Katedra ChemiiSGGWWarsawPoland

Personalised recommendations