Experimental Research and Thermographic Analysis of Heat Transfer Processes in a Heat Pipe Heat Exchanger Utilizing as a Working Fluid R134A

  • Łukasz Adrian
  • Piotr Piersa
  • Szymon Szufa
  • Artur Cebula
  • Sebastian Kowalczyk
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

This article presents the experimental results of a heat pipe heat exchanger for the lower temperature range of 15–50 °C. It is worth noting that the heat pipes, thanks to the wide temperature range and high efficiency, can soon be used in building engineering. Recognizing the processes taking place in their interior and their work is essential especially in the era of striving to reduce heat loss and avoid unnecessary energy dissipation. The goal of this work was to carry out research and analysis of heat pipes and process condition by the need to save primary energy in both civil engineering and industry. The results show the effects of phase changes for the R134A refrigerant as well as the effect of its amount on the heat and power of the heat pipe. One of the main objectives of the study is to analyze the efficiency of heat pipes for different amounts of working fluid at different temperatures in both the evaporator section (heat delivery) and the condenser section (heat transfer). The paper presents the results of research on real heat exchanger made from copper 1769 mm tube, 18 mm diameter and 1 mm wall thickness. The study involved placing a heat pipe in a tube heat exchanger in a tube to deliver and receive heat to and from a heat pipe.

Keywords

Heat pipe Heat transfer Phase change 

Notes

Acknowledgements

The studies presented were financed by the National Science Centre (NCN) Poland under the research program Preludium II, Research and development project is entitled nr: DEC-2011/03/N/ST8/05912 pt. “Badania procesów wymiany ciepła i rozkładów pól prędkości przepływów metodą PIV oraz efektów przemian fazowych i transportu kapilarnego zachodzących w wymiennikach ciepła typu rurka ciepła”.

References

  1. 1.
    Adrian, Ł.: Principle of heat pipes construction and operation. J. Chłodnictwo i Klimatyzacja nr 3 (2010). ISSN 1425-9796Google Scholar
  2. 2.
    Adrian, Ł.: Badania termowizyjne i przykłady ich zastosowań, rozdział w poradniku “Wentylacja, Klimatyzacja, Ogrzewanie” pod redakcją prof. dr hab. inż. T. R. Fodemskiego, III (2014). ISBN 83-88285-86-6Google Scholar
  3. 3.
    Payakaruk, T., Terdtoon, P., Ritthidech, S.: Correlations to predict heat transfer characteristics of an inclined closed two-phase thermosyphon at normal operating conditions. Appl. Therm. Eng. 20, 781–790 (2000). LNCS Homepage, http://www.springer.com/lncs. Last accessed 21 Nov 2016
  4. 4.
    Park, J.E., Vakili-Farahani, F., Consolini, L., Thome J.R.: Experimental study on condensation heat transfer in vertical minichannels for new refrigerant R1234ze(E) versus R134a and R236fa. Exp. Therm. Fluid Sci. 35, 442–454 (2011)Google Scholar
  5. 5.
    Smirnov, H.F. (Henry F.): Transport Phenomena in Capillary-Porous Structures and Heat Pipes. CRC Press, Boca Raton (2010r). ISBN 9781420062076Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Łukasz Adrian
    • 1
  • Piotr Piersa
    • 2
  • Szymon Szufa
    • 3
  • Artur Cebula
    • 4
  • Sebastian Kowalczyk
    • 5
  1. 1.Eko-LookSieradzPoland
  2. 2.APS-Ekoinnowacje Sp. z o.o.ŁódźPoland
  3. 3.Biomass Training ResearchOpolePoland
  4. 4.Faculty of Mechanical EngineeringCracow University of TechnologyKrakówPoland
  5. 5.ENSYS S.C.ŚliwinyPoland

Personalised recommendations