Evaluation of the Possibility of Use Geothermal Energy Micropiles TITAN 73/53 to Obtain Low-Temperature Heat Energy Accumulated in the Near-Surface Layers of the Ground in Poland Area

Conference paper
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

Increasing demand in the usage of low-temperature energy sources such as atmospheric air, ground, groundwater or wastewater, which are freely available in the environment, lead to seek new methods and technologies to obtain them. One of these are for example geothermal energy piles (GEP), foundation piles inside which a vertical exchanger is placed to exploit low-temperature geothermal energy. They gained growing popularity over past few years, because of modern assembly technology which allows to make them in any conditions during one technological process. The aim of the work was to estimate the possibility of use geothermal energy micropiles TITAN 73/53 to obtain low-enthalpy heat energy from near-surface layers of the ground in Poland area. Assessment was carried out based on Map of Geological-Engineering of Poland on a scale of 1:500,000, enriched with information gained from literature data and from TITAN Polska Company. Conducted analysis has shown that geothermal energy micropiles TITAN 73/53 in the most parts of the country can be used as very promising and cost-effective technology for more efficient, even 50% more than conventional, acquisition of relatively large amounts of heat energy accumulated in shallow layers of ground in Poland area.

Keywords

Low-temperature geothermal energy Heat pump Geothermal energy piles Vertical exchanger 

Notes

Acknowledgements

The paper has been prepared under the AGH-UST statutory research grant No. 11.11.140.031.

References

  1. 1.
    Fadejev, J., Kurnitski, J.: Geothermal energy piles and boreholes design with heat pump in a whole building simulation software. Energy Build. 106, 23–34 (2015)CrossRefGoogle Scholar
  2. 2.
    Kapuściński, J., Rodzoch, A.: Geotermia niskotemperaturowa w Polsce i na świecie: stan aktualny i perspektywy rozwoju: uwarunkowania techniczne, środowiskowe i ekonomiczne. Ministerstwo Środowiska, Warszawa, ISBN 83-86286-15-6 (2010)Google Scholar
  3. 3.
    Ng, C.W.W., Ma, Q.J., Gunawan, A.: Horizontal stress change of energy piles subjected to thermal cycles in sand. Comput. Geotech. 78, 54–61 (2016)CrossRefGoogle Scholar
  4. 4.
    Faizal, M., Bouazza, A., Singh, R.M.: Heat transfer enhancement of geothermal energy piles. Renew. Sustain. Energy Rev. 57, 16–33 (2016)CrossRefGoogle Scholar
  5. 5.
    Cecinato, F., Loveridge, F.A.: Influences on the thermal efficiency of energy piles. Energy 82, 1021–1033 (2015)CrossRefGoogle Scholar
  6. 6.
    Carotenuto, A., Marotta, P., Massarotti, N., Mauro, A.: Energy piles for ground source heat pump applications: comparison of heat transfer performance for different design and operating parameters. Appl. Therm. Eng. http://dx.doi.org/10/1016/j.applthermaleng.2017.06.038 (2017)
  7. 7.
    Franco, A., Moffat, R., Toledo, M., Herrera, P.: Numerical sensitivity analysis of thermal response tests (TRT) in energy piles. Renew. Energy 86, 985–992 (2016)CrossRefGoogle Scholar
  8. 8.
    Culha, O., Gunerhan, H., Biyik, E., Ekren, O., Hepbasli, A.: Heat exchanger applications in wastewater source heat pumps for buildings. Energy Build. 104, 215–232 (2015)CrossRefGoogle Scholar
  9. 9.
    Abdelaziz, S.L., Olgun, C.G., Martin, II, J.R.: Design and operational considerations of geothermal energy piles. Geo-Frontiers, 450–459 (2011)Google Scholar
  10. 10.
    Faizal, M., Bouazza, A., Singh, R.M.: An experimental investigation of the influence of intermittent and continuous operating modes on the thermal behavior of a full scale geothermal energy pile. Geomech. Energy Environ. 8, 8–29 (2016)CrossRefGoogle Scholar
  11. 11.
    Brandl, H.: Energy foundations and other thermo-active ground structures. Geotechnique 56, 81–122 (2006)CrossRefGoogle Scholar
  12. 12.
    Maca, N., Ryżyński, G.: Termopale – termoaktywne elementy posadowień obiektów budowlanych (TITAN Polska). XI Międzynarodowe Targi Geologiczne GEO-EKO-TECH 8-9 maja 2013 (2013)Google Scholar
  13. 13.
    Rychlewski, P., Jurasz, W., Sierant, J.: Fundamenty palowe – jako elementy instalacji pozyskującej energię cieplną z gruntu w instalacjach pomp ciepła – termopale. Inżynier budownictwa – vademecum geoinżynierii I (2014)Google Scholar
  14. 14.
    Sierant, J.: Mikropalowa (r)ewolucja – mikropale geotermalne. Materiały budowlane 7 No. 455 (2010)Google Scholar
  15. 15.
    Jakubowicz, B., Łodzińska, W.: Mapa Geologiczo-Inżynierska Polski w skali 1:500 000. PIG (1994)Google Scholar
  16. 16.
    TITAN Polska Company information materialsGoogle Scholar
  17. 17.
    Pająk, L., Tomaszewska, B.: Porównanie efektów energetycznych, ekonomicznych i ekologicznych wykorzystania pompy ciepła typu woda/woda i solanka/woda do ogrzewania domu jednorodzinnego. Ciepłownictwo, Ogrzewnictwo, Wentylacja 47(4), 152–157 (2016)Google Scholar
  18. 18.
    Tyszer, M., Tomaszewska, B.: Geologiczne uwarunkowania oceny potencjału geotermii niskotemperaturowej w Polsce. Ciepłownictwo, ogrzewnictwo, wentylacja 47(7), 265–269 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Geology, Geophysics and Environmental ProtectionAGH University of Science and TechnologyKrakówPoland
  2. 2.Mineral and Energy Economy Research InstitutePolish Academy of SciencesKrakówPoland

Personalised recommendations