Utilization of Waste from Methane Fermentation in Lemnaceae Plant Breeding Intended for Energy Purposes

  • Zdzislawa Romanowska-Duda
  • Krzysztof Piotrowski
  • Piotr Dziugan
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

The increase in environmental pollution caused by waste from agro-food industry and methane fermentation in biogas plants is currently one of the most serious problems. More and more governments launch programs supporting biogas plant construction and conversing biogas into electric energy. One of the methods to utilize the waste from methane fermentation in biogas plants is its utilization as a culture medium for breeding Lemnaceae aquatic plants. Water biomass can be diversely used in agriculture, energy production, phytoremediation and as animal feed. The plants Spirodela polyrrhiza were cultured in a phytotronic room at 24 °C. The medium was supplemented with various concentrations of leachate coming from the process of methane fermentation from biogas plants. The following physiological parameters were measured (i) plant gas exchange i.e. net photosynthesis (mmol H2O/m−2 s−1), transpiration (mmol H2O/m−2 s−1), stomatal conductance (mmol H2O m−2 s−1), and intercellular CO2 concentration (μmol CO2 mol air−1), (ii) index of chlorophyll content and (iii) fresh and dry matter. The obtained results justified the use of post-fermentation leachate to supplement the culture medium thus indicating the possible way of its utilization. This method can be an efficient way to recycle waste from methane fermentation in biogas plants, to develop a cost-effective system of high-quality water biomass production with an array of applications in production of liquid and gaseous biofuels, in agriculture (animal feed, fertilizers) and phytoremediation. This will decrease the costs and limit environmental pollution.

Keywords

Post-fermentation waste Water biomass Lemnaceae 

Notes

Acknowledgements

Research were supported by National Centre for Research and Development Grant No. BIOSTRATEG 2/296369/5/NCBR/2016.

References

  1. 1.
    Zehnder in Staub R.: Ernährungphysiologish-autökologische Untersuchung an den planktonischen Blaualge Oscillatoria rubescens DC. Schweiz. Z. Hydrol. 23, 82–198 (1961)Google Scholar
  2. 2.
    Badek, B., Romanowska-Duda, Z., Van Dujin, B., Grzesik, M.: Rapid evaluation of germinability of primed china aster (Callistephus chinensis Ness.) seeds with physiological and biochemical markers. J. Hort. Res. 22, 2.  https://doi.org/10.2478/johr-2014-0017 (2014)
  3. 3.
    Grzesik, M., Romanowska-Duda, Z.: Improvements in germination, growth, and metabolic activity of corn seedlings by grain conditioning and root application with cyanobacteria and microalgae. Polish J. Environ. Stud. 23(4), 1147–1153 (2014)Google Scholar
  4. 4.
    Grzesik, M., Romanowska-Duda, Z., Kalaji, H.M.: Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica 55(3), 510–521 (2017).  https://doi.org/10.1007/s11099-017-0716-1 CrossRefGoogle Scholar
  5. 5.
    Kalaji, M.H., Carpentier, R., Allakhverdiev, S.I., Bosa, K.: Fluorescence parameters as an early indicator of light stress in barley. J. Photochem. Photobiol. 112, 1.  https://doi.org/10.1016/j.jphotobiol.2012.03.009, (2012)
  6. 6.
    Kalaji, M.H., Schanskser, G., Ladle, R.J., Goltsev, V., Bosak, K., Allakhverdiev, S.I., Brestic, M., Bussotti, F., Calatayud, A., Dabrowski, P., Elsheery, N., Ferroni, L., Guidi, L., Hogewoning, S.W., Jajoo, A., Misra, A.N., Nebauer, S.G., Pancaldi, S., Penella, C., Poli, D., Pollastrini, M., Romanowska-Duda, Z.B., Rutkowska, B., Serodio, J., Suresh, K., Szulc, W., Tambussi, E., Yanniccari, M., Zivcak, M.: Frequently asked questions about chlorophyll fluorescence: practical issues. Photosynth. Res. 122, 121–158 (2014).  https://doi.org/10.1007/s11120-014-0024-6 CrossRefGoogle Scholar
  7. 7.
    Alburquerque, A.J., Fuente, C., Ferrer-Costa, A., Carrasco, L., Cegarra, J., Abad, M., Bernal, P.M.: Assessment of the fertilizer potential of digestates from farm and agroindustrial residues. Biomass Bioen. 40, 181–189 (2012)Google Scholar
  8. 8.
    Czekała, W., Pilarski, K., Dach, J., Janczak, D., Szymańska, M.: Analysis of management possibilities for digestate from biogas plant. Technika Ogrodnicza Rolnicza Leśna 4 (2012)Google Scholar
  9. 9.
    Bień, J., Bień, B.: Biogazownia rolnicza elementem programu gospodarki odpadami i wytwarzania zielonej energii w gminie. Inżynieria i Ochrona Środowiska 13(1), 17–27 (2010)Google Scholar
  10. 10.
    Pontus, K.: Osad pofermentacyjny oraz jego wykorzystanie. InnoBaltica, 108–117 (2013)Google Scholar
  11. 11.
    Kowalczyk-Juśko, A., Szymańska, M.: Poferment nawozem dla rolnictwa. Fundacja na rzecz Rozwoju Polskiego Rolnictwa (2015)Google Scholar
  12. 12.
    MAE: Biogaz rolniczy—produkcja i wykorzystanie. Mazow. Agencja Energ, Warszawa (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Zdzislawa Romanowska-Duda
    • 1
  • Krzysztof Piotrowski
    • 1
  • Piotr Dziugan
    • 2
  1. 1.Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental ProtectionUniversity of LodzLodzPoland
  2. 2.Faculty of Biotechnology and Food SciencesLodz University of TechnologyLodzPoland

Personalised recommendations