Skip to main content

Tests of a Steam Piston Engine Under Supercritical Conditions

  • Conference paper
  • First Online:
Book cover Renewable Energy Sources: Engineering, Technology, Innovation

Abstract

The purpose of the tests is smart growth of a micro combined heat and power plant, intended to be fed with biogas, biomass or any other type of fuel (an aspect to be taken into account in the developmental stage of a prototype) with an impulse piston steam engine, power generator or a water brake (modelling, simulating, substituting workloads). The research system included the following units: an inductive supercritical steam generator (eventually replaced with a steam boiler fed with biogas, biomass or any other solid or liquid fuel), a piston steam engine fed with steam of supercritical parameters with a patented steam-supply system including an impulse injection valve, a power generator (interchangeably with water brake), a steam generation system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dowkontt, J.: Teoria silników cieplnych. WKiŁ, Warszawa (1973)

    Google Scholar 

  2. Zagórski, J.: Zarys techniki cieplnej. WNT, Warszawa (1971)

    Google Scholar 

  3. Ochęduszko, S.: Termodynamika stosowana. WNT, Warszawa (1970)

    Google Scholar 

  4. Szargut, J.: Termodynamika techniczna. PWN, Warszawa (1991)

    Google Scholar 

  5. Staniszewski, B.: Termodynamika. PWN, Warszawa (1982)

    Google Scholar 

  6. Knizia, K.: Die thermodynamik des Dampkraftprozesses. Springer Verlag, Berlin (2010)

    Google Scholar 

  7. Golec, T., Rakowski, J., Świrski, J.: Perspektywy postępu technicznego w wytwarzaniu energii elektrycznej przy wykorzystaniu węgla kamiennego, węgla brunatnego oraz gazu ziemnego z uwzględnieniem efektu środowiskowego. Instytut Energetyki, Warszawa (2003)

    Google Scholar 

  8. Li, X., Kininmont, D., Le Pierres, R., Dewson, S.J.: Alloy 617 for the high temperature diffusion—bonded compact heat exchangers. Proceedings of ICAPP 2008, Anaheim, CA USA, June 8–12 (2008)

    Google Scholar 

  9. Flizikowski, J., Mroziński, A., Tomporowski, A.: Active monitoring as cognitive control of grinders design. AIP Conf. Proc. 1822, 020006 (2017)

    Article  Google Scholar 

  10. Flizikowski, J, Topoliński, T, Opielak, M, Tomporowski, A, Mroziński, A.: Research and analysis of operating characteristics of energetic biomass micronizer. Eksploatacja i Niezawodność—Maintenance and Reliability, vol. 17, no 1, str. 19–26 (2015)

    Google Scholar 

  11. Rataj, Z.L., Walewski, A.W., Wojnar, W.B.: Badania oraz wariantowa analiza techniczna rozwiązań koncepcyjnych kotłów pyłowych na parametry nadkrytyczne z paleniskiem niskoemisyjnym—wybór technologii odsiarczania i odazotowania spalin, oraz utylizacji odpadów paleniskowych. Politechnika Śląska, IMUE, Gliwice (1998)

    Google Scholar 

  12. Kotlicki, T., Pawlik, M.: Innowacyjne technologie węglowe dla ograniczenia emisji CO2. Rynek Energii nr 3 (2011)

    Google Scholar 

  13. Kacejko, P.: Inżynieria elektryczna i informatyczna w nowych technologiach elektroenergetycznych. Nowoczesna Edukacja, Lublin (2011)

    Google Scholar 

  14. Skorek, J., Kalina, J.: Gazowe układy kogeneracyjne. WNT, Warszawa (2005)

    Google Scholar 

  15. Piętak, A.: Studium możliwości wykorzystania silników o obiegu Stirlinga do kogeneracyjnych agregatów zasilanych biopaliwami. IMP PAN, tom 33 Gdańsk (2013)

    Google Scholar 

  16. Fu, J., Liu, J., Ren, C., Wang, L., Deng, B., Xu, Z.: An open steam power cycle used for IC engine exhaust gas energy recovery. Energy 44, 544–554 (2012)

    Article  Google Scholar 

  17. Fu, J., Liu, J., Ren, C., Xu, Z., Ren, C., Deng, B.: A combined thermodynamic cycle based on methanol dissociation for IC (internal combustion) engine exhaust heat recovery. Energy 55, 778–786 (2013)

    Article  Google Scholar 

  18. Ayhan, V.: Theoretical and experimental investigation of diesel engine with steam injection system on performance and emission parameters. Appl. Therm. Eng. 54, 161–170 (2013)

    Article  Google Scholar 

  19. Hassan, M.H.: Technologies to recover exhaust heat from internal combustion engines. Renew. Sustain. Energy Rev. 16, 5649–559 (2012)

    Article  Google Scholar 

  20. Parlak, A.: Investigation of the effects of steam injection on performance and emissions of a diesel engine fuelled with tobacco seed oil methyl ester. Fuel Process. Technol. 116, 101–109 (2013)

    Article  Google Scholar 

  21. Wang, T., Zhang, Y., Shu, C.: A review of researches on thermal exhaust heat recovery with Rankine cycle. Renew. Sustain. Energy Rev. 15, 2862–2871 (2011)

    Article  Google Scholar 

  22. Franco, A., Diaz, A.R.: The future challenges for clean coal technologies: joining efficiency increase and pollutant emission control. Energy 34, 348–354 (2008)

    Article  Google Scholar 

  23. Garcia, R.F.: Efficiency enhancement of combined cycles by suitable working fluids and operating conditions. Appl. Therm. Eng. 42, 25–33 (2012)

    Article  Google Scholar 

  24. Wenzhi, G., Junmeng, Z., Guanghua, B., Liming, F.: Performance evaluation and experiment system for waste heat recovery of diesel engine. Energy 55, 226–235 (2013)

    Article  Google Scholar 

  25. Vaja, I., Gambarotta, A.: Internal Combustion Engine (ICE) bottoming with Organic Rankine Cycles (ORCs). Energy 35, 1084–1093 (2010)

    Article  Google Scholar 

  26. Schuster, A., Karellas, S., Aumann, R.: Efficiency optimization potential in supercritical Organic Rankine Cycles. Energy 35, 1033–1039 (2010)

    Article  Google Scholar 

  27. Lewandowski, M.: Proekologiczne źródła energii odnawialnej. WNT, Warszawa (2002)

    Google Scholar 

  28. Pikoń, K., Stelmach, S.: Współczesne problemy energetyki. Archiwum Gospodarki Odpadami i Ochrony Środowiska, Gliwice (2013)

    Google Scholar 

  29. Rataj, Z.L., Walewski, A.W., Wojnar, W.B.: Badania oraz wariantowa analiza techniczna rozwiązań koncepcyjnych kotłów pyłowych na parametry nadkrytyczne z paleniskiem niskoemisyjnym—wybór technologii odsiarczania i odazotowania spalin, oraz utylizacji odpadów paleniskowych. Politechnika Śląska, IMUE, Gliwice (1998)

    Google Scholar 

  30. Chochowski, A.: Energia. Difin, pp. 86–87 (2012)

    Google Scholar 

  31. Wiser, W.H.: Energy Resources. Springer-Verlag, New York (2000)

    Book  Google Scholar 

  32. Paska, J.: Wytwarzanie energii elektrycznej. Oficyna Wydawnicza PW, Warszawa (2005)

    Google Scholar 

  33. Zandian, A., Ashjaee, M.: The thermal efficiency improvement of a steam Rankine cycle by innovative design of a hybrid cooling tower and a solar chimney concept. Renew. Energy 51, 465–473 (2013)

    Google Scholar 

  34. Shipley, A., Hampson, A., Hedman, B., Garland, P., Bautista, P.: Combined heat and power effective energy solutions for a sustainable future. Elsevier, Energy Efficiency and Renewable Energy (2008)

    Google Scholar 

  35. San Martín, J.I., Zamora, I., San Martín, J.J., Aperribay, V., Eguía, P.: Trigeneration Systems with Fuel Cells. Power 40, 65–85 (2008)

    Google Scholar 

  36. Babus’Haq, R.F., Pearson, J.P., Probert, S.D., O’Callaghan, P.W.: Economics of mini-combined heat-and-power packages for use in hotels. Heat Recovery Syst. CHP 10(3), 269–75 (1990)

    Google Scholar 

  37. Evans, R.D.: Environmental and economic implications of small-scale CHP. Energy Policy 21, 79–91 (1990)

    Google Scholar 

  38. Orchard, W.: CHP demonstration scheme reduces CO2 emissions by 73 percent. Energy Manag. 20–21 (1990)

    Google Scholar 

  39. Badr, O., Naik, S., O’Callaghan, P.W., Probert, S.D.: Expansion machine for a low power-output steam Rankine-Cycle Engine. Appl. Energy 39, 93–116 (1991)

    Google Scholar 

  40. Badr, O., O’Callaghan, P.W., Hussein, M., Probert, S.D.: Multi-vane expanders as prime movers for low-grade energy organic Rankine-cycle engines. Appl. Energy 16(2), 129–146 (1984)

    Google Scholar 

  41. Bahadori, M.N.: Solar water-pumping. Solar Energy 21(4), 307–316 (1978)

    Google Scholar 

  42. Suri, R., Chandra, S., Kreshinamorthy, M.V., Srinivasamurthy, S., Berndorfer, K., Hopmann, H., Wolf, D.: Development of small power-plants in rural areas in India. Proc. ISES Congress, pp. 1722–1727 (1978), New Delhi

    Google Scholar 

  43. Lorenz, J., Fuestel, J., Kraft, M.: New developments for future solar-power plants. In: Proceedings of International Syrup: Workshop on Solar Energy, pp. 1318–1328, Cairo (1978)

    Google Scholar 

  44. O’Callaghan, P.W., Wood, R.J., Bell, M.A., Hussein, M., Patel, R.M., Buick, T.R., Probert S.D.: Optimization of a multi-vane expander as the prime mover in an organic Rankine cycle. Final report of Contract No. EEB/1/121/80/UK/H, Commission of European Communities (1983)

    Google Scholar 

  45. O’Callaghan, P.W., Bell, M.A., Wood, R.J.: The development of heat-engine driven heat-pumps. Final Report of Contract No. GR/B/75334, SERC, UK (1984)

    Google Scholar 

  46. O’Neill, P.: Development of the screw compressor and its application in the petrochemical and related industries. In: Proceedings of the Fluid Machinery for the Oil, Petrochemical and Related Industries Conference Paper, No. C48/81, 24–26 March 1981, The Hague, Netherlands. Mechanical Engineering Publications, London, pp. 1–13 (1981)

    Google Scholar 

  47. Badr, O., Naik, S., O’Callaghan, P.W., Probert, S.D.: Wankel engines as steam expanders: design considerations. Appl. Energy 40, 157–170 (1991)

    Article  Google Scholar 

  48. Badr, O., Naik, S., O’Callaghan, P.W., Probert, S.D.: Rotary Wankel engines as expansion devices in steam Rankine-cycle engines. Appl. Energy 39(1), 59–76 (1991)

    Article  Google Scholar 

  49. Antonelli, M., Martorano, L.: A study on the rotary steam engine for distributed generation in small size power plants. Appl. Energy 97, 642–647 (2012)

    Google Scholar 

  50. http://www.asiapacificpartnership.org/pdf/PGTTF/events-october-06/24%20-%20New%20Gen%20Strategy%20Ultra-Supercritical%20Technlgy.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Wełnowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wełnowski, J., Wełnowski, D., Topoliński, T., Flizikowski, J., Mroziński, A. (2018). Tests of a Steam Piston Engine Under Supercritical Conditions. In: Mudryk, K., Werle, S. (eds) Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-72371-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72371-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72370-9

  • Online ISBN: 978-3-319-72371-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics