Advertisement

Tests of a Steam Piston Engine Under Supercritical Conditions

  • Janusz Wełnowski
  • Damian Wełnowski
  • Tomasz Topoliński
  • Józef Flizikowski
  • Adam Mroziński
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

The purpose of the tests is smart growth of a micro combined heat and power plant, intended to be fed with biogas, biomass or any other type of fuel (an aspect to be taken into account in the developmental stage of a prototype) with an impulse piston steam engine, power generator or a water brake (modelling, simulating, substituting workloads). The research system included the following units: an inductive supercritical steam generator (eventually replaced with a steam boiler fed with biogas, biomass or any other solid or liquid fuel), a piston steam engine fed with steam of supercritical parameters with a patented steam-supply system including an impulse injection valve, a power generator (interchangeably with water brake), a steam generation system.

Keywords

Steam engine Supercritical steam Micro combined heat and power plants 

References

  1. 1.
    Dowkontt, J.: Teoria silników cieplnych. WKiŁ, Warszawa (1973)Google Scholar
  2. 2.
    Zagórski, J.: Zarys techniki cieplnej. WNT, Warszawa (1971)Google Scholar
  3. 3.
    Ochęduszko, S.: Termodynamika stosowana. WNT, Warszawa (1970)Google Scholar
  4. 4.
    Szargut, J.: Termodynamika techniczna. PWN, Warszawa (1991)Google Scholar
  5. 5.
    Staniszewski, B.: Termodynamika. PWN, Warszawa (1982)Google Scholar
  6. 6.
    Knizia, K.: Die thermodynamik des Dampkraftprozesses. Springer Verlag, Berlin (2010)Google Scholar
  7. 7.
    Golec, T., Rakowski, J., Świrski, J.: Perspektywy postępu technicznego w wytwarzaniu energii elektrycznej przy wykorzystaniu węgla kamiennego, węgla brunatnego oraz gazu ziemnego z uwzględnieniem efektu środowiskowego. Instytut Energetyki, Warszawa (2003)Google Scholar
  8. 8.
    Li, X., Kininmont, D., Le Pierres, R., Dewson, S.J.: Alloy 617 for the high temperature diffusion—bonded compact heat exchangers. Proceedings of ICAPP 2008, Anaheim, CA USA, June 8–12 (2008)Google Scholar
  9. 9.
    Flizikowski, J., Mroziński, A., Tomporowski, A.: Active monitoring as cognitive control of grinders design. AIP Conf. Proc. 1822, 020006 (2017)CrossRefGoogle Scholar
  10. 10.
    Flizikowski, J, Topoliński, T, Opielak, M, Tomporowski, A, Mroziński, A.: Research and analysis of operating characteristics of energetic biomass micronizer. Eksploatacja i Niezawodność—Maintenance and Reliability, vol. 17, no 1, str. 19–26 (2015)Google Scholar
  11. 11.
    Rataj, Z.L., Walewski, A.W., Wojnar, W.B.: Badania oraz wariantowa analiza techniczna rozwiązań koncepcyjnych kotłów pyłowych na parametry nadkrytyczne z paleniskiem niskoemisyjnym—wybór technologii odsiarczania i odazotowania spalin, oraz utylizacji odpadów paleniskowych. Politechnika Śląska, IMUE, Gliwice (1998)Google Scholar
  12. 12.
    Kotlicki, T., Pawlik, M.: Innowacyjne technologie węglowe dla ograniczenia emisji CO2. Rynek Energii nr 3 (2011)Google Scholar
  13. 13.
    Kacejko, P.: Inżynieria elektryczna i informatyczna w nowych technologiach elektroenergetycznych. Nowoczesna Edukacja, Lublin (2011)Google Scholar
  14. 14.
    Skorek, J., Kalina, J.: Gazowe układy kogeneracyjne. WNT, Warszawa (2005)Google Scholar
  15. 15.
    Piętak, A.: Studium możliwości wykorzystania silników o obiegu Stirlinga do kogeneracyjnych agregatów zasilanych biopaliwami. IMP PAN, tom 33 Gdańsk (2013)Google Scholar
  16. 16.
    Fu, J., Liu, J., Ren, C., Wang, L., Deng, B., Xu, Z.: An open steam power cycle used for IC engine exhaust gas energy recovery. Energy 44, 544–554 (2012)CrossRefGoogle Scholar
  17. 17.
    Fu, J., Liu, J., Ren, C., Xu, Z., Ren, C., Deng, B.: A combined thermodynamic cycle based on methanol dissociation for IC (internal combustion) engine exhaust heat recovery. Energy 55, 778–786 (2013)CrossRefGoogle Scholar
  18. 18.
    Ayhan, V.: Theoretical and experimental investigation of diesel engine with steam injection system on performance and emission parameters. Appl. Therm. Eng. 54, 161–170 (2013)CrossRefGoogle Scholar
  19. 19.
    Hassan, M.H.: Technologies to recover exhaust heat from internal combustion engines. Renew. Sustain. Energy Rev. 16, 5649–559 (2012)CrossRefGoogle Scholar
  20. 20.
    Parlak, A.: Investigation of the effects of steam injection on performance and emissions of a diesel engine fuelled with tobacco seed oil methyl ester. Fuel Process. Technol. 116, 101–109 (2013)CrossRefGoogle Scholar
  21. 21.
    Wang, T., Zhang, Y., Shu, C.: A review of researches on thermal exhaust heat recovery with Rankine cycle. Renew. Sustain. Energy Rev. 15, 2862–2871 (2011)CrossRefGoogle Scholar
  22. 22.
    Franco, A., Diaz, A.R.: The future challenges for clean coal technologies: joining efficiency increase and pollutant emission control. Energy 34, 348–354 (2008)CrossRefGoogle Scholar
  23. 23.
    Garcia, R.F.: Efficiency enhancement of combined cycles by suitable working fluids and operating conditions. Appl. Therm. Eng. 42, 25–33 (2012)CrossRefGoogle Scholar
  24. 24.
    Wenzhi, G., Junmeng, Z., Guanghua, B., Liming, F.: Performance evaluation and experiment system for waste heat recovery of diesel engine. Energy 55, 226–235 (2013)CrossRefGoogle Scholar
  25. 25.
    Vaja, I., Gambarotta, A.: Internal Combustion Engine (ICE) bottoming with Organic Rankine Cycles (ORCs). Energy 35, 1084–1093 (2010)CrossRefGoogle Scholar
  26. 26.
    Schuster, A., Karellas, S., Aumann, R.: Efficiency optimization potential in supercritical Organic Rankine Cycles. Energy 35, 1033–1039 (2010)CrossRefGoogle Scholar
  27. 27.
    Lewandowski, M.: Proekologiczne źródła energii odnawialnej. WNT, Warszawa (2002)Google Scholar
  28. 28.
    Pikoń, K., Stelmach, S.: Współczesne problemy energetyki. Archiwum Gospodarki Odpadami i Ochrony Środowiska, Gliwice (2013)Google Scholar
  29. 29.
    Rataj, Z.L., Walewski, A.W., Wojnar, W.B.: Badania oraz wariantowa analiza techniczna rozwiązań koncepcyjnych kotłów pyłowych na parametry nadkrytyczne z paleniskiem niskoemisyjnym—wybór technologii odsiarczania i odazotowania spalin, oraz utylizacji odpadów paleniskowych. Politechnika Śląska, IMUE, Gliwice (1998)Google Scholar
  30. 30.
    Chochowski, A.: Energia. Difin, pp. 86–87 (2012)Google Scholar
  31. 31.
    Wiser, W.H.: Energy Resources. Springer-Verlag, New York (2000)CrossRefGoogle Scholar
  32. 32.
    Paska, J.: Wytwarzanie energii elektrycznej. Oficyna Wydawnicza PW, Warszawa (2005)Google Scholar
  33. 33.
    Zandian, A., Ashjaee, M.: The thermal efficiency improvement of a steam Rankine cycle by innovative design of a hybrid cooling tower and a solar chimney concept. Renew. Energy 51, 465–473 (2013)Google Scholar
  34. 34.
    Shipley, A., Hampson, A., Hedman, B., Garland, P., Bautista, P.: Combined heat and power effective energy solutions for a sustainable future. Elsevier, Energy Efficiency and Renewable Energy (2008)Google Scholar
  35. 35.
    San Martín, J.I., Zamora, I., San Martín, J.J., Aperribay, V., Eguía, P.: Trigeneration Systems with Fuel Cells. Power 40, 65–85 (2008)Google Scholar
  36. 36.
    Babus’Haq, R.F., Pearson, J.P., Probert, S.D., O’Callaghan, P.W.: Economics of mini-combined heat-and-power packages for use in hotels. Heat Recovery Syst. CHP 10(3), 269–75 (1990)Google Scholar
  37. 37.
    Evans, R.D.: Environmental and economic implications of small-scale CHP. Energy Policy 21, 79–91 (1990)Google Scholar
  38. 38.
    Orchard, W.: CHP demonstration scheme reduces CO2 emissions by 73 percent. Energy Manag. 20–21 (1990)Google Scholar
  39. 39.
    Badr, O., Naik, S., O’Callaghan, P.W., Probert, S.D.: Expansion machine for a low power-output steam Rankine-Cycle Engine. Appl. Energy 39, 93–116 (1991)Google Scholar
  40. 40.
    Badr, O., O’Callaghan, P.W., Hussein, M., Probert, S.D.: Multi-vane expanders as prime movers for low-grade energy organic Rankine-cycle engines. Appl. Energy 16(2), 129–146 (1984)Google Scholar
  41. 41.
    Bahadori, M.N.: Solar water-pumping. Solar Energy 21(4), 307–316 (1978)Google Scholar
  42. 42.
    Suri, R., Chandra, S., Kreshinamorthy, M.V., Srinivasamurthy, S., Berndorfer, K., Hopmann, H., Wolf, D.: Development of small power-plants in rural areas in India. Proc. ISES Congress, pp. 1722–1727 (1978), New DelhiGoogle Scholar
  43. 43.
    Lorenz, J., Fuestel, J., Kraft, M.: New developments for future solar-power plants. In: Proceedings of International Syrup: Workshop on Solar Energy, pp. 1318–1328, Cairo (1978)Google Scholar
  44. 44.
    O’Callaghan, P.W., Wood, R.J., Bell, M.A., Hussein, M., Patel, R.M., Buick, T.R., Probert S.D.: Optimization of a multi-vane expander as the prime mover in an organic Rankine cycle. Final report of Contract No. EEB/1/121/80/UK/H, Commission of European Communities (1983)Google Scholar
  45. 45.
    O’Callaghan, P.W., Bell, M.A., Wood, R.J.: The development of heat-engine driven heat-pumps. Final Report of Contract No. GR/B/75334, SERC, UK (1984)Google Scholar
  46. 46.
    O’Neill, P.: Development of the screw compressor and its application in the petrochemical and related industries. In: Proceedings of the Fluid Machinery for the Oil, Petrochemical and Related Industries Conference Paper, No. C48/81, 24–26 March 1981, The Hague, Netherlands. Mechanical Engineering Publications, London, pp. 1–13 (1981)Google Scholar
  47. 47.
    Badr, O., Naik, S., O’Callaghan, P.W., Probert, S.D.: Wankel engines as steam expanders: design considerations. Appl. Energy 40, 157–170 (1991)CrossRefGoogle Scholar
  48. 48.
    Badr, O., Naik, S., O’Callaghan, P.W., Probert, S.D.: Rotary Wankel engines as expansion devices in steam Rankine-cycle engines. Appl. Energy 39(1), 59–76 (1991)CrossRefGoogle Scholar
  49. 49.
    Antonelli, M., Martorano, L.: A study on the rotary steam engine for distributed generation in small size power plants. Appl. Energy 97, 642–647 (2012)Google Scholar
  50. 50.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Janusz Wełnowski
    • 1
  • Damian Wełnowski
    • 1
  • Tomasz Topoliński
    • 2
  • Józef Flizikowski
    • 2
  • Adam Mroziński
    • 2
  1. 1.Prosperitos sp. z o.o.Białe BłotaPoland
  2. 2.University of Science and Technology in BydgoszczBydgoszczPoland

Personalised recommendations