Advertisement

A Fuzzy Model of the Composting Process with Simultaneous Heat Recovery and Aeration Rate Control

  • Maciej Neugebauer
  • Tomasz Jakubowski
  • Piotr Sołowiej
  • Maciej Wesołowski
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

Composting is an effective method of managing biomass waste from agricultural crops and food processing. This exothermic reaction produces high-quality humus. Heat generated during composting can be evacuated from the compost pile and used effectively for other purposes. Effective methods are needed to control prism aeration and the evacuation of heat from the compost prism to maximize heat gain without compromising the composting process. A preliminary examination of fuzzy logic systems revealed that the terms of input and output variables and sharpening methods have to be adapted to specific compost materials. This approach also delivers immediate results without the need for lengthy research. The composting process lasts several weeks, therefore, models which illustrate the responses of control systems save time and support the selection of the optimal solutions for changing the aeration rate and heat consumption in feedstock. Fuzzy models of the control system developed in the LabVIEW programs are effective tools which can be directly implemented in a programmable logic controller (PLC).

Keywords

Composting Fuzzy logic Heat reception 

References

  1. 1.
    Kollikkathara, N., Feng, H., Stern, E.: A purview of waste management evolution: special emphasis on USA. Waste Manage. 29, 974–985 (2009)CrossRefGoogle Scholar
  2. 2.
    Jakubowski, T., Sołowiej, P.: Dynamics of temperature changes in thermophille phase of composting process in the aspect of sanitary condition of obtained material. Agric. Eng. 20(4), 207–217 (2016)Google Scholar
  3. 3.
    Lashermes, G., Barriuso, E., Le Villio-Poitrenaud, M., Houot, S.: Composting in small laboratory pilots: performance and reproducibility. Waste Manage. 32, 271–277 (2012)CrossRefGoogle Scholar
  4. 4.
    Raj, D., Antil, R.S.: Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes. Biores. Technol. 102, 2868–2873 (2011)CrossRefGoogle Scholar
  5. 5.
    Pagans, E., Barrena, R., Font, X., Sánchez, A.: Ammonia emissions from the composting of different organic wastes. Dependency on process temperature. Chemosphere 62, 1534–1542 (2006)CrossRefGoogle Scholar
  6. 6.
    Yang, F., Li, G.X., Yang, Q.Y., Luo, W.H.: Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting. Chemosphere 93, 1393–1399 (2013)CrossRefGoogle Scholar
  7. 7.
    Puyuelo, B., Gea, T., Sánchez, A.: A new control strategy for the composting process based on the oxygen uptake rate. Chem. Eng. J. 165, 161–169 (2010)CrossRefGoogle Scholar
  8. 8.
    Kulcu, R., Yaldiz, O.: Determination of aeration rate and kinetics of composting some agricultural wastes. Biores. Technol. 93, 49–57 (2004)CrossRefGoogle Scholar
  9. 9.
    Sołowiej, P., Piechocki, J., Neugebauer, M.: The impact of bed aeration on the progress of first composting process phase. Inżynieria Rolnicza 3(121), 193–198 (2010)Google Scholar
  10. 10.
    Bari, Q.H., Koenig, A.: Application of a simplified mathematical model to estimate the effect of forced aeration on composting in a closed system. Waste Manage. 32, 2037–2045 (2012)CrossRefGoogle Scholar
  11. 11.
    Neugebauer, M., Sołowiej, P.: Using self-learning algorithms to control composting process for biomass of agricultural origin. Inżynieria Rolnicza 8(117), 147–153 (2009)Google Scholar
  12. 12.
    Castelli, L. Ferrari, R.: Fuzzy logic control applied to in-vessel composting. In: US Composting Council 2007 Conference, Orlando, Florida. Available at: http://nebula.wsimg.com/6091ca06b369e24d1d6a82361f42fd6f?AccessKeyId=1A23BDC9F081DE6ACE22&disposition=0
  13. 13.
    Giusti, E., Marsili-Libelli, S.: Fuzzy modelling of the composting process. Environ. Model Softw. 25, 641–647 (2010)CrossRefGoogle Scholar
  14. 14.
    Jiang, X., Qin, X., Xi, B., Huang, G., Liu, H., Liang, Z., Christine, W.C.: Fuzzy approach for dynamic simulation of composting process under uncertainty. Civ. Eng. Res. (2012)Google Scholar
  15. 15.
    Qin, X., Huang, G., Zeng, G., Chakma, A., Xi, B.: A fuzzy composting process model. J. Air Waste Manag. Assoc. 57(5), 535–550 (2007)CrossRefGoogle Scholar
  16. 16.
    Gerla, G.: Fuzzy logic programming and fuzzy control. Stud. Logic. 79, 231–254 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Mamdani, E.: Application of fuzzy logic to approximate reasoning using linguistic systems. Fuzzy Sets Syst. 26, 1182–1191 (1977)MATHGoogle Scholar
  18. 18.
    Guo, T., Liu, G.: Aadaptive fuzzy control for unknown nonlinear time-delay systems with virtual control functions. Int. J. Control Autom. Syst. 9(6), 1227–1234 (2011)CrossRefGoogle Scholar
  19. 19.
    Cиpoтюк, B., Гaльчaк, B., Cиpoтюк, C.: Fuzzy logic кoнтpoллep coлнeчнoй cиcтeмы гopячeгo вoдocнaбжeния. Motrol 16(4), 32–37 (2014)Google Scholar
  20. 20.
    Cиpoтюк, C., Cиpoтюк, B., Гaльчaк, B.: Fuzzy-logic кoнтpoллep yпpaвлeния peжимaми paбoты вeтpoэлeктpичecкoй ycтaнoвки. Motrol 17(4), 39–46 (2015)Google Scholar
  21. 21.
    Du, Z., Qu, Z.: Improved adaptive fuzzy control for MIMO nonlinear time-delay systems. J. Control Theory Appl. 9(2), 278–282 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Işik, H., Saraçoğlu, E.: The design of thermoelectric footwear heating system via fuzzy logic. J. Med. Syst. 31, 521–527 (2007)CrossRefGoogle Scholar
  23. 23.
    Luo, X., Sun, Z., Sun, F.: A new approach to fuzzy modeling and control for nonlinear dynamic systems: neuro-fuzzy dynamic characteristic modeling and adaptive control mechanism. Int. J. Control Autom. Syst. 7(1), 123–132 (2009)CrossRefGoogle Scholar
  24. 24.
    Niittymäki, J., Turunen, E.: Traffic signal control on similarity logic reasoning. Fuzzy Sets Syst. 133, 109–131 (2003)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wang, X., Selvam, A., Chan, M., Wong, J.: Nitrogen conservation and acidity control during food wastes composting through struvite formation. Biores. Technol. 147, 17–22 (2013)CrossRefGoogle Scholar
  26. 26.
    Guo, R., Li, G., Jiang, T., Schuchardt, F., Chen, T., Zhao, Y., Shen, Y.: Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Biores. Technol. 112, 171–178 (2012)CrossRefGoogle Scholar
  27. 27.
    Muhamad, N.A., Sam, A.: LabVIEW with fuzzy logic controller simulation panel for condition monitoring of oil and dry type transformer. Int. J. Appl. Math. Comput. Sci. 213–219 (2005). 1; 4 © www.waset.org
  28. 28.
    Neugebauer, M., Sołowiej, P., Piechocki, J.: Fuzzy control for the process of heat removal during the composting of agricultural waste. J. Mater. Cycles Waste Manage. 16(2), 87–93 (2013)Google Scholar
  29. 29.
    Neugebauer, M., Sołowiej, P.: The concept of using fuzzy logic to control composting process for biomass of agricultural origin with simultaneous heat reception. Inżynieria Rolnicza 8(117), 139–145 (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Maciej Neugebauer
    • 1
  • Tomasz Jakubowski
    • 2
  • Piotr Sołowiej
    • 1
  • Maciej Wesołowski
    • 1
  1. 1.University of Warmia and Mazury in OlsztynOlsztynPoland
  2. 2.University of Agriculture in KrakowKrakówPoland

Personalised recommendations