Does Wetland Biomass Provide an Alternative to Maize in Biogas Generation?

  • Sławomir Roj-RojewskiEmail author
  • Agnieszka Wysocka-Czubaszek
  • Robert Czubaszek
  • Piotr Banaszuk
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)


The substantial amount of the agricultural biogas plants is now facing economical problems due to rising operational costs, which force them to quest for the cheaper alternative to silage maize. The aim of the study was to examine the biogas and methane yield of two wetland species: common reed and reed canary grass, and compare it to the biogas productivity of commonly used mixture of maize, poultry manure, and swine manure. In batch assay the methane yield of poultry manure was the highest and reached about 530 NL CH4 kg−1 VS. The methane yield of maize silage was lower and equaled to 435 NL CH4 kg−1 VS. Much lower values were received from reed canary grass and swine manure (204 and 171 NL CH4 kg−1 VS, respectively) and the lowest from common reed (148 NL CH4 kg−1 VS). Due to notably smaller biogas and specific methane yields grasses from landscaping are unlikely to wholly replace maize silage. However, they can be considered as interesting co-substrate, with methane productivity that is comparable to swine manure. Collecting grasses is relatively cheap, as it does not require fertilization and crop protection expenditure, while mowing of biomass can contribute to protection of biodiversity of wetlands and abandoned meadows.


Biogas Biomethane potential test Wetland biomass Reed canary grass Common reed Maize silage Manure 



This work was financially supported by Ministry of Science and Higher Education as a part of the project S/WBiIŚ/1/17, Bialystok University of Technology, Bialystok, Poland.


  1. 1.
  2. 2.
    URE. Mapa Odnawialnych Źródeł Energii, Urząd Regulacji Energii. Last accessed 26 May 2017
  3. 3.
    Podkówka, Z., Podkówka, W.: Substraty dla biogazowni rolniczych. Agro Serwis Biznes-Press sp. z o.o., Warszawa (2010)Google Scholar
  4. 4.
    Register of energy companies producing agricultural biogas. Last accessed 26 May 2017
  5. 5.
    Fachagentur Nachwachsende Rohstoffe e.V. (FNR). Bioenergy in Germany facts and figures 2016. FNR 2017, 484, Last accessed 27 May 2017
  6. 6.
    Szlachta, J.: Ekspertyza—Możliwości pozyskania biogazu rolniczego jako odnawialnego źródła energii. Instytut Inżynierii Rolniczej UP, Wrocław (2009)Google Scholar
  7. 7.
    Popp, J., Lakner, Z., Harangi-Rákos, M., Fári, M.: The effect of bioenergy expansion: food, energy, and environment. Renew. Sust. Energ. Rev. 32, 559–578 (2014)CrossRefGoogle Scholar
  8. 8.
    Banaszuk, P., Wysocka-Czubaszek, A., Czubaszek, R., Roj-Rojewski, S.: Skutki energetycznego wykorzystania biomasy, Wieś i Rolnictwo, PAN. Instytut Rozwoju Wsi i Rolnictwa 4(169), 13–152 (2015)Google Scholar
  9. 9.
    Schorling, M., Enders, C., Voigt, C.A.: Assessing the cultivation potential of the energy crop Miscanthus x giganteus for Germany. GCB Bioenergy 7, 763–773 (2015)CrossRefGoogle Scholar
  10. 10.
    Banaszuk, P., Kamocki, A.: Effects of climatic fluctuations and land-use changes on the hydrology of temperate fluviogenous mire. Ecol. Eng. 32, 33–146 (2008)CrossRefGoogle Scholar
  11. 11.
    Raposo, F., Fernández-Cegrí, V., de la Rubia, M.A., Borja, R., Béline, F., Cavinato, C., Demirer, G., Fernández, B., Fdz-Polanco, M., Frigon, J.C., Ganesh, R., Kaparaju, P., Koubova, J., Méndez, R., Menin, G., Peene, A., Scherer, P., Torrijos, M., Uellendahl, H., Wierinck, I., de Wilde, V.: Biochemicalmethane potential (BMP) of solid organic substrates: Evaluation of anaerobic biodegradability using data from an international interlaboratory study. J. Chem. Technol. Biotechnol. 86(8), 1088–1098 (2011)CrossRefGoogle Scholar
  12. 12.
    Al Seadi, T., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S., Janssen, R.: Biogas Handbook. University of Southern Denmark, Esbjerg (2008)Google Scholar
  13. 13.
    Seppälä, M., Paavola, T., Lehtomäki, A., Rintala, J.: Biogas production from boreal herbaceous grasses—specific methane yield and methane yield per hectare. Bioresour. Technol. 100, 2952–2958 (2009)CrossRefGoogle Scholar
  14. 14.
    Chynoweth, D.P., Turick, C.E., Owens, J.M., Jerger, D.E., Peck, M.W.: Biochemical methane potential of biomass and waste feedstock. Biomass Bioenergy 5(1), 95–111 (1993)CrossRefGoogle Scholar
  15. 15.
    Triolo, J.M., Sommer, S.G., Møller, H.B., Weisbjerg, M.R., Jiang, X.Y.: A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential. Bioresour. Technol. 102, 9395–9402 (2011)CrossRefGoogle Scholar
  16. 16.
    Oleszek, M., Król, A., Tys, J., Matyka, M., Kulik, M.: Comparison of biogas production from wild and cultivated varieties of reed canary grass. Bioresour. Technol. 156, 303–306 (2014)CrossRefGoogle Scholar
  17. 17.
    Massé, D., Gilbert, Y., Savoie, P., Bélanger, G., Parent, G., Babineau, D.: Methane yield from switchgrass and reed canarygrass grown in Eastern Canada. Bioresour. Technol. 102, 10286–10292 (2011)CrossRefGoogle Scholar
  18. 18.
    APHA.: Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC (1998)Google Scholar
  19. 19.
    Weiland, P.: Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol. 85, 849–860 (2010)CrossRefGoogle Scholar
  20. 20.
    Parkin, G.F., Owen, W.F.: Fundamentals of anaerobic-digestion of waste-water sludges. J. Environ. Eng. ASCE 112(5), 867–920 (1986)CrossRefGoogle Scholar
  21. 21.
    Weiland, P.: State of the art of solid-state digestion—recent developments. In: Rohstoffe, F.N. (ed.) Solid-State Digestion—State of the Art and Further R&D Requirements, vol. 24, pp. 22–38. Gulzower Fachgespräche, (2006)Google Scholar
  22. 22.
    Pang, Y.Z., Liu, Y.P., Li, X.J., Wang, K.S., Yuan, H.R.: Improving biodegradability and biogas production of corn stover through sodium hydroxide solid state pretreatment. Energ. Fuel 22(4), 2761–2776 (2008)CrossRefGoogle Scholar
  23. 23.
    Podkówka, W.: Biogaz rolniczy odnawialne źródło energii. Teoria i praktyczne zastosowanie. Powszechne Wydawnictwo Rolnicze i Leśne, Warszawa (2012)Google Scholar
  24. 24.
    Weiland, P.: Grundlagen der Methangärung-Biologie und substrate. In: Biogas als regenerative Energie-Stand und Perspektiven; Tagung. 19–20 Juni, Hanover (2001)Google Scholar
  25. 25.
    Effenberger, M., Lebuhn, M.: Methangärung—die Belastungsgrenzen erkennen. Mais Special. Biogas, pp. 4–7 (2008)Google Scholar
  26. 26.
    Fachagentur Nachwachsende Rohstoffe e.V (FNR). Handreichung Biogasgewinnung und—nutzung. Institut fur Energetik und Umwelt gGmbH. FNR 2006, Gülzow. Last accessed 2017/06/05
  27. 27.
    Amon, T., Kryvoruchko, V., Amon, B., Moitzi, G., Buga, S., Fistarol Lyson, D., Hackl, E., Jeremic, D.: Biogas production from the energy crops maize and clover grass. Final Report No. 1249 GZ 24.002/59-IIA1/01 to the Austrian Federal Ministry of Agriculture and Environment. University of Natural Resources and Life Sciences, Vienna (2003)Google Scholar
  28. 28.
    Jagadabhi, P.S., Kaparaju, P., Rintala, J.: Two-stage anaerobicdigestion of tomato, cucumber, common reed and grass silage in leach-bed reactors and upflow anaerobic sludge blanket reactors. Bioresour. Technol. 102, 4726–4733 (2011)CrossRefGoogle Scholar
  29. 29.
    Lehtomäki, A., Viinikainen, T.A., Rintala, J.A.: Screening boreal energy crops and crop residues for methane biofuel production. Biomass Bioenergy 32, 541–550 (2008)CrossRefGoogle Scholar
  30. 30.
    Lemmer, A., Oechsner, H.: Einsatz von Mähgut landwirtschaftlich nicht genutzter Flächen als Kosubstrat in landwirtschaftlichen Biogasanlagen. Tagungsband zur 5. Internationalen Tagung Bau, Technik und Umwelt in der landwirtschaftlichen Nutztierhaltung. Hohenheim, 398–401 (2001)Google Scholar
  31. 31.
    Amon, T., Bodiroza, V., Kryvoruchko, V., Machmüller, A., Bauer, A.: Energetische Nutzung von Schilfgras von extensiven Naturschutzflächen des Nationalparks Neusiedler See und Makrophyten des Neusiedler Sees. Research Report, Vienna (2007)Google Scholar
  32. 32.
    Raposo, F., Banks, C.J., Siegert, I., Heaven, S., Borja, R.: Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem. 41, 1444–1450 (2006)CrossRefGoogle Scholar
  33. 33.
    Braun, R.: Anaerobic digestion—a multi faceted process for energy, environmental management and rural development. In: Ranalli, P. (ed.) Improvement of Crop Plants for Industrial End Users. Springer, Berlin (2007)Google Scholar
  34. 34.
    Gizińska-Górna, M., Czekała, W., Józwiakowski, J., Lewicki, A., Dach, J., Marzec, M., Pytka, A., Janczak, D., Kowalczyk-Jusko, A., Listosz, A.: The possibility of using plants from hybrid constructed wetland wastewater treatment plant for energy purposes. Ecol. Eng. 95, 534–541 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sławomir Roj-Rojewski
    • 1
    Email author
  • Agnieszka Wysocka-Czubaszek
    • 1
  • Robert Czubaszek
    • 1
  • Piotr Banaszuk
    • 1
  1. 1.Bialystok University of TechnologyBialystokPoland

Personalised recommendations