Study the Physical Properties of the Fruit Pomace for Energy Use

  • Joanna PasternakEmail author
  • Paweł Purgał
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)


The world economy in the production of electricity and heat, is increasingly based on the use of renewable energy sources to replace partially or totally fossil fuels. Biofuels provide an opportunity for energy production in many sectors while maintaining ecological conditions. Having regard to energy security in all regions of the country and the guarantee of sufficient resources for energy production, it must be constantly searched for new and locally available raw materials for the production of environmentally friendly fuel, whose physico-chemical parameters will fully implement efficient combustion or incineration. Fruit processing plants offer post-production waste, which can be used as biomass. At the turn of the last years they developed a number of kilns, whose aim is to get the plant product with a humidity below 15%. Laboratory tests conducted at Kielce University of Technology, demonstrated the possibility of using agro biomass as a component of the mixtures of waste wood for their energy efficiency. Analytical moisture, heat of combustion, calorific value, and ash participation were analyzed. It has shown the difference in the residue of the same mixture at two temperatures of incineration. The possibility of increasing the amount of biomass as a renewable source of energy becomes a reality, both in industry and in private farms. To stop the process of environmental pollution, which has recently been intensified more and more, one should be more broadly interested in the use of post-production waste of plant origin, available on the domestic market.


Fruit pomace Calorific value Ashes 


  1. 1.
    Łaba S.: Proekologiczne działania w zakresie zagospodarowania odpadów w przemyśle owocowo-warzywnym, Stowarzyszenie Ekonomistów Rolnictwa i Agrobiznesu, Roczniki Naukowe tom XIV, zeszyt 5Google Scholar
  2. 2.
    Lasek J., Głód K., Kazalski K., Janusz M., Wilk B.: Ocena modeli do określania właściwości kalorycznych paliw stałych pod kątem ich zastosowania w bilansowaniu obiektów energetyki zawodowej—cz. I modelowanie oraz analiza procedur wyznaczania wartości opałowej biomasy, Rynek Energii pp. 100 (2013)Google Scholar
  3. 3.
    Borycka B.: Walory ekologiczne spalania biomasy z odpadów owocowo—warzywnych, Energetyka i Ekologia pp. 848 (2009)Google Scholar
  4. 4.
    PN-EN ISO 18134-3:2015-11: Biopaliwa stałe. Oznaczanie zawartości wilgoci. Metoda suszarkowaGoogle Scholar
  5. 5.
    PN-EN ISO 1928:2002: Paliwa stałe. Oznaczanie ciepła spalania metodą spalania w bombie kalorymetrycznej i obliczanie wartości opałowejGoogle Scholar
  6. 6.
  7. 7.
    PN-EN ISO 18122:2016 Biopaliwa stałe. Oznaczanie zawartości popiołuGoogle Scholar
  8. 8.
    PN-ISO 1171: 2002 Paliwa stałe. Oznaczanie popiołuGoogle Scholar
  9. 9.
    Wielgoński G., Łechtańska P.: Emisja Zanieczyszczeń z procesu spalania biomasy, Politechnika Łódzka, Wydział Inżynierii Procesowej i Ochrony Środowiska pp. 391–400 (2010)Google Scholar
  10. 10.
    Koruba D., Piotrowski J.Z., Latosińska J.: Biomass—alternative renewable energy source to the fossil fuels. In: E3S Web of Conferences 14, Energy and Fuels pp. 1–10 (2017)Google Scholar
  11. 11.
    Wisz J., Matwiejew A.: Biomasa-badania w laboratorium w aspekcie przydatności do energetycznego spalania, Energetyka pp. 631 (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Katedra Fizyki Budowli I Energii OdnawialnejPolitechnika ŚwiętokrzyskaKielcePoland

Personalised recommendations