Skip to main content

Thermal Separation and Leaching of Valuable Elements from Waste-Derived Ashes

  • Conference paper
  • First Online:
Book cover Energy Technology 2018 (TMS 2018)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 3176 Accesses

Abstract

Recovery of trace elements from different industrial waste streams is important in realizing the goals of the circular economy. Ash streams from waste combustion can contain high levels of both toxic and valuable trace elements. These elements can be separated during the combustion process based on volatilization and condensation, as well as being separated in post-combustion processes, through thermal or leaching treatment. In this study, an overview is given of the thermal methods for recovery of valuable elements from ash fractions derived from waste incineration. In addition, a case study is presented of the behaviour of ash-forming elements in combustion of MSW and demolition wood, with special focus on the elements Co, Cu, and Sb. In conclusion, it is shown that thermodynamic modeling of high temperature processes can be a useful tool to predict ash behavior both during combustion and in the post combustion treatment of the ash.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van der Sloot HA, Kosson DS, Hjelmar O (2001) Characteristics, treatment and utilization of residues from municipal waste incineration. Waste Manag 21:753–765

    Article  Google Scholar 

  2. Sabbas T, Polettini A, Pomi R, Astrup T, Hjelmar O, Mostbauer P, Cappai G, Magel G, Salhofer S, Speiser C, Heuss-Assbichler S, Klein R, Lechner P (2003) Management of municipal solid waste incineration residues. Waste Manag 23:61–88

    Article  CAS  Google Scholar 

  3. Quina MJ, Bordado JC, Quinta-Ferreira RM (2008) Treatment and use of air pollution control residues from MSW incineration: an overview. Waste Manag 28:2097–2121

    Article  CAS  Google Scholar 

  4. Whiticar DM, Ralph J (2011) Waste to energy. A Technical Review of Municipal Solid Waste Thermal Treatment Practices—Final Report. Stantec Consulting Ltd, p 339. http://www.env.gov.bc.ca/epd/mun-waste/reports/pdf/BCMOE-WTE-Emissions-final.pdf

  5. Zacco A, Borgese L, Gianoncelli A, Struis RPWJ, Depero LE, Bontempi E (2014) Review of fly ash inertisation treatments and recycling. Environ Chem Lett 12:153–175

    Article  CAS  Google Scholar 

  6. C. IAWG (International Ash Working Group) AJ, Eighmy TT, Hartle´n O, Kosson D, Sawell SE, van der Sloot H, Vehlow J (1997) Municipal solid waste incinerator residues. studies in environmental science. Elsevier

    Google Scholar 

  7. Lindberg D, Molin C, Hupa M (2015) Thermal treatment of solid residues from WtE units: A review. Waste Manag 37:82–94

    Article  CAS  Google Scholar 

  8. Tanigaki N, Manako K, Osada M (2012) Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system. Waste Manag Oxford, U. K. 32:667–675

    Article  CAS  Google Scholar 

  9. Jung CH, Matsuto T, Tanaka N (2005) Behavior of metals in ash melting and gasification-melting of municipal solid waste (MSW). Waste Manage Amsterdam Neth 25:301–310

    Article  CAS  Google Scholar 

  10. Arena U, Di Gregorio F (2013) Element partitioning in combustion- and gasification-based waste-to-energy units. Waste Manage Oxford, U. K. 33:1142–1150

    Article  CAS  Google Scholar 

  11. Ljung A, Nordin A (1997) Theoretical feasibility for ecological biomass ash recirculation: chemical equilibrium behavior of nutrient elements and heavy metals during combustion. Environ Sci Technol 31:2499–2503

    Article  CAS  Google Scholar 

  12. Obernberger I, Biedermann F (1997) Fractionated Heavy metal separation in biomass combustion plants-possibilities, technological approach, experiences. In: The impact of mineral impurities in solid fuel combustion, Engineering Foundation, New York, United States, Kona, Hawaii, USA

    Google Scholar 

  13. Obernberger I, Biedermann F, Widmann W, Riedl R (1997) Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass Bioenerg 12:211–224

    Article  CAS  Google Scholar 

  14. Kangas P, Koukkari P, Lindberg D, Hupa M (2014) Modelling black liquor combustion with the constrained Gibbs energy method. J Sci Technol For Prod Process 3:6–15

    Google Scholar 

  15. Kangas P, Koukkari P, Brink A, Hupa M (2015) Feasibility of the constrained free energy method for modeling NO formation in combustion. Chem Eng Technol 38:1173–1182

    Article  CAS  Google Scholar 

  16. Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Hack K, Jung I-H, Kang Y-B, Melançon J, Pelton AD, Robelin C, Petersen S (2009) FactSage thermochemical software and databases—recent developments. CALPHAD: Comput Coupling Phase Diagr Thermochem 33:295–311

    Article  CAS  Google Scholar 

  17. Lindberg D, Backman R, Chartrand P (2007) Thermodynamic evaluation and optimization of the (NaCl + Na2SO4 + Na2CO3 + KCl + K2SO4 + K2CO3) system. J Chem Thermodyn 39:1001–1021

    Article  CAS  Google Scholar 

  18. Vainio E, Lindberg D, Yrjas P (2015) Characterisation and on-line measurements of ashes—continuous leaching analysis of ashes. Arvi - material value chains, project report. https://portal.cleen.fi/_layouts/IWXmlPublications.aspx?Source=ARVI&FileId=265

  19. Lindberg D, Vainio E, Yrjas P (2015) Critical review of thermodynamic data for heavy metals in aqueous solutions and thermodynamic calculations of solubility of heavy metal compounds in ash. Arvi—material value chains, project report. https://portal.cleen.fi/_layouts/IWXmlPublications.aspx?Source=ARVI&FileId=266

  20. Laine-Ylijoki J, Bacher J, Tommi Kaartinen K, Korpijärvi M, Wahlström M, Castell-Rüdenhausen z (2015) Review on Elemental Recovery Potential of Ashes. Arvi—material value chains, project report. https://portal.cleen.fi/_layouts/IWXmlPublications.aspx?Source=ARVI&FileId=220

  21. Vainio E, Hupa E, Eriksson J-E, Lindberg D, Yrjas P (2017) Continuous leaching analysis of ashes. Arvi—material value chains, project report. https://portal.cleen.fi/_layouts/IWXmlPublications.aspx?Source=ARVI&FileId=689

Download references

Acknowledgements

The study was performed within the ARVI-Material Value Chains Research Program, coordinated by CLIC Innovation Oy and financed by Tekes – the Finnish Funding Agency for Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lindberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lindberg, D., Vainio, E., Yrjas, P. (2018). Thermal Separation and Leaching of Valuable Elements from Waste-Derived Ashes. In: Sun, Z., et al. Energy Technology 2018 . TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72362-4_21

Download citation

Publish with us

Policies and ethics