Skip to main content

Leaching and Carbonation of Electric Arc Furnace (EAF) Slag Under a Microwave Field for Mineral Carbonation

  • Conference paper
  • First Online:
Energy Technology 2018 (TMS 2018)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 3277 Accesses

Abstract

The aqueous mineral carbonation process that leaching alkaline earth metals from industrial residues by ammonium salt and carbonation thereafter is one of the potential technologies for CO2 sequestration. In this paper, the effect of particle size of waste slag on the leaching rate of metals under a microwave field and effect of microwave irradiation on the carbonation process were investigated. It was found that the initial leaching ratio of Ca decline seriously with the particle size of EAF slag increasing, and the Ca leaching ratio is relatively low during 120 min leaching. The lower leaching ratio of Ca with large particle size is due to the existence of a silica product layer produced on the surface of calcium silicates. Moreover, due to the microwave irradiation, the leaching ratio of calcium and the crystallization rate of calcium carbonate increase, though the particle size and distribution range of calcium carbonate reduce.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Polettini A, Pomi R, Stramazzo A (2016) Carbon sequestration through accelerated carbonation of BOF slag: influence of particle size characteristics. Chem Eng J 298:26–35

    Article  CAS  Google Scholar 

  2. Li Y, Ma X, Wang W, Chi C, Shi J, Duan L (2017) Enhanced CO2 capture capacity of limestone by discontinuous addition of hydrogen chloride in carbonation at calcium looping conditions. Chem Eng J 316:438–448

    Article  CAS  Google Scholar 

  3. Lackner KS, Wendt CH, Butt DP, Jr ELJ, Sharp DH (1995) Carbon dioxide disposal in carbonate minerals. Energy 20(11):1153–1170

    Article  CAS  Google Scholar 

  4. Kojima T, Nagamine A, Ueno N, Uemiya S (1997) Absorption and fixation of carbon dioxide by rock weathering. Energ Convers Manage 38(36):237–242

    Google Scholar 

  5. Kakizawa M, Yamasaki A, Yanagisawa Y (2001) A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid. Energy 26(4):341–354

    Article  CAS  Google Scholar 

  6. Park AHA, Fan LS (2004) CO2 mathcontainer loading mathjax mineral sequestration: physically activated dissolution of serpentine and pH swing process. Chem Eng Sci 59(22–23):5241–5247

    Article  CAS  Google Scholar 

  7. Huijgen WJ, Witkamp GJ, Comans RN (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Tech 39(24):9676

    Article  CAS  Google Scholar 

  8. Lekakh SN, Rawlins CH, Robertson DGC, Richards VL, Peaslee KD (2008) Kinetics of aqueous leaching and carbonization of steelmaking slag. Metall Mater Trans B 39(1):125–134

    Article  Google Scholar 

  9. Tong Z, Ma G, Zhang X (2017) Microwave activation of electric arc furnace (EAF) slag for strengthening calcium extraction with ammonium chloride solution. J Solid Waste Technol Manag 43(2):137–144

    Article  Google Scholar 

  10. Li X, Bertos MF, Hills CD, Carey PJ, Simon S (2007) Accelerated carbonation of municipal solid waste incineration fly ashes. Waste Manage 27(9):1200–1206

    Article  CAS  Google Scholar 

  11. Nyambura MG, Mugera GW, Felicia PL, Gathura NP (2011) Carbonation of brine impacted fractionated coal fly ash: implications for CO2 sequestration. J Environ Manage 92(3):655–664

    Article  CAS  Google Scholar 

  12. Huntzinger DN, Gierke JS, Sutter LL, Kawatra SK, Eisele TC (2009) Mineral carbonation for carbon sequestration in cement kiln dust from waste piles. J Hazard Mater 168(1):31

    Article  CAS  Google Scholar 

  13. Jo H, Park SH, Jang YN, Chae SC, Lee PK, Jo HY (2014) Metal extraction and indirect mineral carbonation of waste cement material using ammonium salt solutions. Chem Eng J 254:313–323

    Article  CAS  Google Scholar 

  14. Assima GP, Larachi F, Molson J, Beaudoin G (2014) Impact of temperature and oxygen availability on the dynamics of ambient CO2 mineral sequestration by nickel mining residues. Chem Eng J 240:394–403

    Article  CAS  Google Scholar 

  15. Pasquier LC, Mercier G, Blais JF, Cecchi E, Kentish S (2014) Parameters optimization for direct flue gas CO2 capture and sequestration by aqueous mineral carbonation using activated serpentinite based mining residue. Appl Geochem 50:66–73

    Article  CAS  Google Scholar 

  16. Huajuan DI, Yang L, Pan D (2012) Enhancement of carbon dioxide sequestration with calcium-based residues by ultrasonics. Ciesc J 63(8):2557–2565

    Google Scholar 

  17. Zhang X, Ma G, Tong Z, Xue Z (2017) Microwave-assisted selective leaching behavior of calcium from basic oxygen furnace (BOF) slag with ammonium chloride solution. J Min Metall 53(2):139–146

    Article  Google Scholar 

  18. Tong Z, Ma G, Zhang X, Cai Y (2017) Microwave-supported leaching of electric arc furnace (EAF) slag by ammonium salts. Minerals 7(7):119

    Article  Google Scholar 

  19. Dong O, Xie Y (1991) Composition, mineral morphology and cementitious properties of converter slag. J Chin Ceramic Soc, Beijing

    Google Scholar 

  20. Hou G, Li W, Guo W, Chen J, Luo J, Wang J (2008) Microstructure and mineral phase of converter slag. J Chin Ceramic Soc 36(4):436–443

    CAS  Google Scholar 

  21. Ju S (2006) Study on hydrometallurgical thermodynamics of metal (Cu, Ni, Au) in the system of Me-NH4Cl-NH3-H2O and heap leaching process of their low-grade ores. Ph.D. thesis, Central South University

    Google Scholar 

  22. Yan X, Wang P, Su J (2007) Key technologies on nano calcium carbonate. Chemical Industry Press, Beijing

    Google Scholar 

  23. Lin R (1997) Study on the crystalline kinetics and reaction parameters of precipitate calcium carbonate. Master thesis, Guangxi University

    Google Scholar 

  24. Rodriguez-clemente R, Gomez-morales J (1996) Microwave precipitation of CaCO3 from homogeneous solutions. J Cryst Growth 169(2):339–346

    Article  CAS  Google Scholar 

  25. Xiang L, Wen Y, Wang Q, Jin Y (2006) Formation and characterization of dispersive Mg substituted CaCO3. Mater Lett 60(13–14):1719–1723

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Natural Science Research Foundation of China (51374161) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojun Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tong, Z., Ma, G., Zhang, X., Liu, J., Shao, L. (2018). Leaching and Carbonation of Electric Arc Furnace (EAF) Slag Under a Microwave Field for Mineral Carbonation. In: Sun, Z., et al. Energy Technology 2018 . TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72362-4_15

Download citation

Publish with us

Policies and ethics