Skip to main content

Electrochemical and Spectroscopic Study of Eu(III)/Eu(II) Couple in the 1-Ethyl-3-Methylimidazolium Bis(Trifluromethanesulfonyl)Imide Ionic Liquid

  • Conference paper
  • First Online:
Rare Metal Technology 2018 (TMS 2018)

Abstract

Ionic liquids (ILs) are molten salts composed of an organic cation that are liquid below 100 °C. They demonstrate unique physico-chemical properties such as good conductivity, negligible vapor pressure and non-flammability. As a consequence, they are often regarded as green solvents and could become an alternative to the use of both high-temperature molten salts and volatile organic solvents in rare-earth elements processing and recycling. The diversity of interactions existing in an ionic liquid allows the solubilization of both polar and apolar compounds. Moreover, coordinating functions on their composing ions can lead to stabilization of some species. For instance, in non-aqueous media, europium exists in the (II) oxidation state which is not stable in aqueous solutions. Understanding the mechanism of Eu(III) electrochemical reduction to Eu(II) and the stabilization of Eu(II) species in IL media could be of major interest for the development of innovative recycling processes. Using transient electrochemistry and UV-Vis spectroscopy we could get valuable information on the redox behavior of the Eu(III)/(II) couple in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([EMIm][NTf2]). Reduction of Eu(III) to Eu(II) and stability of Eu(II) was also studied thanks to a XAS-spectro-electrochemistry set up used to follow in situ the evolution of the XANES spectrum around the L3 edge of Eu during electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moutiers G, Billard I (2005) Les liquides ioniques: des solvants pour l’industrie. Tech, Ing

    Google Scholar 

  2. Zhang S, Wang J, Lu X, Zhou Q (eds) (2014) Structures and interactions of ionic liquids. Springer, Verlag, Berlin, Heidelberg

    Google Scholar 

  3. Chavan SN, Tiwari A, Nagaiah TC, Mandal D (2016) Ether and siloxane functionalized ionic liquids and their mixtures as electrolyte for lithium-ion batteries. Phys Chem Chem Phys 18:16116–16126. https://doi.org/10.1039/C6CP01519K

    Article  Google Scholar 

  4. Nockemann P, Thijs B, Parac-Vogt TN et al (2008) Carboxyl-functionalized task-specific ionic liquids for solubilizing metal oxides. Inorg Chem 47:9987–9999. https://doi.org/10.1021/ic801213z

    Article  Google Scholar 

  5. Wang G, Shen S, Fang S et al (2016) New ether-functionalized pyrazolium ionic liquid electrolytes based on the bis(fluorosulfonyl)imide anion for lithium-ion batteries. RSC Adv 6:71489–71495. https://doi.org/10.1039/C6RA16348C

    Article  Google Scholar 

  6. Bonhote P, Dias A-P, Papageorgiou N et al (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178

    Article  Google Scholar 

  7. Billard I, Moutiers G, Labet A et al (2003) Stability of divalent europium in an ionic liquid: spectroscopic investigations in 1-Methyl-3-butylimidazolium hexafluorophosphate. Inorg Chem 42:1726–1733. https://doi.org/10.1021/ic0260318

    Article  Google Scholar 

  8. Binnemans K, Jones PT, Van Acker K et al (2013) Rare-earth economics: the balance problem. JOM 65:846–848. https://doi.org/10.1007/s11837-013-0639-7

    Article  Google Scholar 

  9. Chen J (2016) Application of ionic liquids on rare earth green separation and utilization. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  10. Shearer CK, Papike JJ, Burger PV et al (2011) Direct determination of europium valence state by XANES in extraterrestrial merrillite: implications for REE crystal chemistry and martian magmatism. Am Mineral 96:1418–1421. https://doi.org/10.2138/am.2011.3860

    Article  Google Scholar 

  11. Cicconi MR, Giuli G, Paris E et al (2012) Europium oxidation state and local structure in silicate glasses. Am Mineral 97:918–929. https://doi.org/10.2138/am.2012.4041

    Article  Google Scholar 

  12. LLorens I, Solari PL, Sitaud B et al (2014) X-ray absorption spectroscopy investigations on radioactive matter using MARS beamline at SOLEIL synchrotron. Radiochim Acta. https://doi.org/10.1515/ract-2013-2241

  13. Nockemann P, Thijs B, Lunstroot K et al (2009) Speciation of rare-earth metal complexes in ionic liquids: a multiple-technique approach. Chem Eur J 15:1449–1461. https://doi.org/10.1002/chem.200801418

    Article  Google Scholar 

  14. Poineau F, Fattahi M, Auwer CD et al (2006) Speciation of technetium and rhenium complexes by in situ XAS-electrochemistry. Radiochim Acta. https://doi.org/10.1524/ract.2006.94.5.283

    Google Scholar 

  15. Antonio MR, Soderholm L, Song I (1997) Design of spectroelectrochemical cell for in situ X-ray absorption fine structure measurements of bulk solution species. J Appl Electrochem 27:784–792

    Article  Google Scholar 

  16. Stumpf S, Billard I, Gaillard C et al (2008) TRLFS and EXAFS investigations of lanthanide and actinide complexation by triflate and perchlorate in an ionic liquid. Radiochim Acta 96:1–10. https://doi.org/10.1524/ract.2008.1461

    Article  Google Scholar 

  17. Zhang S, Sun N, He X et al (2006) Physical properties of ionic liquids: database and evaluation. J Phys Chem Ref Data 35:1475. https://doi.org/10.1063/1.2204959

    Article  Google Scholar 

  18. Randström S, Montanino M, Appetecchi GB et al (2008) Effect of water and oxygen traces on the cathodic stability of N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. Electrochim Acta 53:6397–6401. https://doi.org/10.1016/j.electacta.2008.04.058

    Article  Google Scholar 

  19. Snook GA, Best AS, Pandolfo AG, Hollenkamp AF (2006) Evaluation of a Ag∣ Ag+ reference electrode for use in room temperature ionic liquids. Electrochem Commun 8:1405–1411. https://doi.org/10.1016/j.elecom.2006.07.004

    Article  Google Scholar 

  20. Bard AJ, Faulkner LR (2001) Electrochemical methods—fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  21. Yamagata M, Katayama Y, Miura T (2006) Electrochemical behavior of samarium, europium, and ytterbium in hydrophobic room-temperature molten salt systems. J Electrochem Soc 153:E5. https://doi.org/10.1149/1.2136088

    Article  Google Scholar 

  22. Rabockai T (1977) Influence of water on the diffusion coefficient of Eu in aqueous formamide solutions.pdf. Electrochim Acta 22:489–490

    Article  Google Scholar 

  23. Binnemans K (2015) Interpretation of europium(III) spectra. Coord Chem Rev 295:1–45. https://doi.org/10.1016/j.ccr.2015.02.015

    Article  Google Scholar 

  24. Gupta R, Gupta SK, Gamre JS et al (2015) Understanding the dynamics of Eu3+ ions in room-temperature ionic liquids—electrochemical and time-resolved fluorescence spectroscopy studies: the dynamics of Eu3+ ions in room-temperature ionic liquids. Eur J Inorg Chem 2015:104–111. https://doi.org/10.1002/ejic.201402713

    Article  Google Scholar 

  25. Fieser ME, Ferrier MG, Su J et al (2017) Evaluating the electronic structure of formal LnII ions in LnII(C5 H4 SiMe3) 1−3 using XANES spectroscopy and DFT calculations. Chem Sci 8:6076–6091. https://doi.org/10.1039/C7SC00825B

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Bengio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bengio, D. et al. (2018). Electrochemical and Spectroscopic Study of Eu(III)/Eu(II) Couple in the 1-Ethyl-3-Methylimidazolium Bis(Trifluromethanesulfonyl)Imide Ionic Liquid. In: Kim, H., et al. Rare Metal Technology 2018. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72350-1_9

Download citation

Publish with us

Policies and ethics