Advertisement

Electrochemical and Spectroscopic Study of Eu(III)/Eu(II) Couple in the 1-Ethyl-3-Methylimidazolium Bis(Trifluromethanesulfonyl)Imide Ionic Liquid

  • David BengioEmail author
  • Thomas Dumas
  • Eric Mendes
  • Pier-Lorenzo Solari
  • Richard Husar
  • Michel Schlegel
  • Philippe Moisy
  • Stéphane Pellet-Rostaing
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Ionic liquids (ILs) are molten salts composed of an organic cation that are liquid below 100 °C. They demonstrate unique physico-chemical properties such as good conductivity, negligible vapor pressure and non-flammability. As a consequence, they are often regarded as green solvents and could become an alternative to the use of both high-temperature molten salts and volatile organic solvents in rare-earth elements processing and recycling. The diversity of interactions existing in an ionic liquid allows the solubilization of both polar and apolar compounds. Moreover, coordinating functions on their composing ions can lead to stabilization of some species. For instance, in non-aqueous media, europium exists in the (II) oxidation state which is not stable in aqueous solutions. Understanding the mechanism of Eu(III) electrochemical reduction to Eu(II) and the stabilization of Eu(II) species in IL media could be of major interest for the development of innovative recycling processes. Using transient electrochemistry and UV-Vis spectroscopy we could get valuable information on the redox behavior of the Eu(III)/(II) couple in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([EMIm][NTf2]). Reduction of Eu(III) to Eu(II) and stability of Eu(II) was also studied thanks to a XAS-spectro-electrochemistry set up used to follow in situ the evolution of the XANES spectrum around the L3 edge of Eu during electrolysis.

Keywords

Lanthanides Europium Electrochemistry Ionic liquids XANES 

References

  1. 1.
    Moutiers G, Billard I (2005) Les liquides ioniques: des solvants pour l’industrie. Tech, IngGoogle Scholar
  2. 2.
    Zhang S, Wang J, Lu X, Zhou Q (eds) (2014) Structures and interactions of ionic liquids. Springer, Verlag, Berlin, HeidelbergGoogle Scholar
  3. 3.
    Chavan SN, Tiwari A, Nagaiah TC, Mandal D (2016) Ether and siloxane functionalized ionic liquids and their mixtures as electrolyte for lithium-ion batteries. Phys Chem Chem Phys 18:16116–16126.  https://doi.org/10.1039/C6CP01519K CrossRefGoogle Scholar
  4. 4.
    Nockemann P, Thijs B, Parac-Vogt TN et al (2008) Carboxyl-functionalized task-specific ionic liquids for solubilizing metal oxides. Inorg Chem 47:9987–9999.  https://doi.org/10.1021/ic801213z CrossRefGoogle Scholar
  5. 5.
    Wang G, Shen S, Fang S et al (2016) New ether-functionalized pyrazolium ionic liquid electrolytes based on the bis(fluorosulfonyl)imide anion for lithium-ion batteries. RSC Adv 6:71489–71495.  https://doi.org/10.1039/C6RA16348C CrossRefGoogle Scholar
  6. 6.
    Bonhote P, Dias A-P, Papageorgiou N et al (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178CrossRefGoogle Scholar
  7. 7.
    Billard I, Moutiers G, Labet A et al (2003) Stability of divalent europium in an ionic liquid: spectroscopic investigations in 1-Methyl-3-butylimidazolium hexafluorophosphate. Inorg Chem 42:1726–1733.  https://doi.org/10.1021/ic0260318 CrossRefGoogle Scholar
  8. 8.
    Binnemans K, Jones PT, Van Acker K et al (2013) Rare-earth economics: the balance problem. JOM 65:846–848.  https://doi.org/10.1007/s11837-013-0639-7 CrossRefGoogle Scholar
  9. 9.
    Chen J (2016) Application of ionic liquids on rare earth green separation and utilization. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  10. 10.
    Shearer CK, Papike JJ, Burger PV et al (2011) Direct determination of europium valence state by XANES in extraterrestrial merrillite: implications for REE crystal chemistry and martian magmatism. Am Mineral 96:1418–1421.  https://doi.org/10.2138/am.2011.3860 CrossRefGoogle Scholar
  11. 11.
    Cicconi MR, Giuli G, Paris E et al (2012) Europium oxidation state and local structure in silicate glasses. Am Mineral 97:918–929.  https://doi.org/10.2138/am.2012.4041 CrossRefGoogle Scholar
  12. 12.
    LLorens I, Solari PL, Sitaud B et al (2014) X-ray absorption spectroscopy investigations on radioactive matter using MARS beamline at SOLEIL synchrotron. Radiochim Acta.  https://doi.org/10.1515/ract-2013-2241
  13. 13.
    Nockemann P, Thijs B, Lunstroot K et al (2009) Speciation of rare-earth metal complexes in ionic liquids: a multiple-technique approach. Chem Eur J 15:1449–1461.  https://doi.org/10.1002/chem.200801418 CrossRefGoogle Scholar
  14. 14.
    Poineau F, Fattahi M, Auwer CD et al (2006) Speciation of technetium and rhenium complexes by in situ XAS-electrochemistry. Radiochim Acta.  https://doi.org/10.1524/ract.2006.94.5.283 Google Scholar
  15. 15.
    Antonio MR, Soderholm L, Song I (1997) Design of spectroelectrochemical cell for in situ X-ray absorption fine structure measurements of bulk solution species. J Appl Electrochem 27:784–792CrossRefGoogle Scholar
  16. 16.
    Stumpf S, Billard I, Gaillard C et al (2008) TRLFS and EXAFS investigations of lanthanide and actinide complexation by triflate and perchlorate in an ionic liquid. Radiochim Acta 96:1–10.  https://doi.org/10.1524/ract.2008.1461 CrossRefGoogle Scholar
  17. 17.
    Zhang S, Sun N, He X et al (2006) Physical properties of ionic liquids: database and evaluation. J Phys Chem Ref Data 35:1475.  https://doi.org/10.1063/1.2204959 CrossRefGoogle Scholar
  18. 18.
    Randström S, Montanino M, Appetecchi GB et al (2008) Effect of water and oxygen traces on the cathodic stability of N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. Electrochim Acta 53:6397–6401.  https://doi.org/10.1016/j.electacta.2008.04.058 CrossRefGoogle Scholar
  19. 19.
    Snook GA, Best AS, Pandolfo AG, Hollenkamp AF (2006) Evaluation of a Ag∣ Ag+ reference electrode for use in room temperature ionic liquids. Electrochem Commun 8:1405–1411.  https://doi.org/10.1016/j.elecom.2006.07.004 CrossRefGoogle Scholar
  20. 20.
    Bard AJ, Faulkner LR (2001) Electrochemical methods—fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  21. 21.
    Yamagata M, Katayama Y, Miura T (2006) Electrochemical behavior of samarium, europium, and ytterbium in hydrophobic room-temperature molten salt systems. J Electrochem Soc 153:E5.  https://doi.org/10.1149/1.2136088 CrossRefGoogle Scholar
  22. 22.
    Rabockai T (1977) Influence of water on the diffusion coefficient of Eu in aqueous formamide solutions.pdf. Electrochim Acta 22:489–490CrossRefGoogle Scholar
  23. 23.
    Binnemans K (2015) Interpretation of europium(III) spectra. Coord Chem Rev 295:1–45.  https://doi.org/10.1016/j.ccr.2015.02.015 CrossRefGoogle Scholar
  24. 24.
    Gupta R, Gupta SK, Gamre JS et al (2015) Understanding the dynamics of Eu3+ ions in room-temperature ionic liquids—electrochemical and time-resolved fluorescence spectroscopy studies: the dynamics of Eu3+ ions in room-temperature ionic liquids. Eur J Inorg Chem 2015:104–111.  https://doi.org/10.1002/ejic.201402713 CrossRefGoogle Scholar
  25. 25.
    Fieser ME, Ferrier MG, Su J et al (2017) Evaluating the electronic structure of formal LnII ions in LnII(C5 H4 SiMe3)31− using XANES spectroscopy and DFT calculations. Chem Sci 8:6076–6091.  https://doi.org/10.1039/C7SC00825B CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • David Bengio
    • 1
    Email author
  • Thomas Dumas
    • 1
  • Eric Mendes
    • 1
  • Pier-Lorenzo Solari
    • 2
  • Richard Husar
    • 1
  • Michel Schlegel
    • 3
  • Philippe Moisy
    • 1
  • Stéphane Pellet-Rostaing
    • 4
  1. 1.CEA MarcouleBagnols-sur-Cèze cedexFrance
  2. 2.Synchrotron SOLEILSaint-AubinFrance
  3. 3.CEA SaclayGif-sur-Yvette cedexFrance
  4. 4.ICSMBagnols-sur-Cèze cedexFrance

Personalised recommendations