Skip to main content

Strengthening of a Biodegradable Mg–Zn–Ca Alloy ZX50 After Processing by HPT and Heat Treatment

  • Conference paper
  • First Online:
Book cover Magnesium Technology 2018 (TMS 2018)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

This study investigates a biodegradable Mg–5Zn–0.3Ca alloy (ZX50) during HPT-processing and long-term heat treatments, the latter with respect to the evolution of intermetallic precipitates and vacancy clusters. Both the precipitates as well as the vacancy clusters achieve strength increases as the Zn atoms may act as potential trapping sites not only for HPT-induced dislocations but also vacancies. So far, overall increases of strength of up to 200% have been reached while keeping the Young’s modulus unchanged, thus representing an attractive improvement of mechanical properties for the actual alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Polmear IJ, Light alloys. Metallurgy of the Light Metals. 3rd ed., London: Arnold; 1995.

    Google Scholar 

  2. Mordike BL, Ebert T. Mater Sci Eng A 2001;302:37.

    Google Scholar 

  3. Agnew SR, Nie JF. Scripta Mater 2010;63:671.

    Google Scholar 

  4. Alexander D, J Mater Eng Perform 2007;16:360.

    Google Scholar 

  5. Zehetbauer MJ, Zhu YTWiley VCH Weinheim 2009.

    Google Scholar 

  6. Valiev R, Nature Mater 2004;3:511.

    Google Scholar 

  7. Somekawa H, Singh A, Mukai T. Mater Trans 2007;48:1422.

    Google Scholar 

  8. Langdon TG, Acta Mater 2013;61:7035.

    Google Scholar 

  9. Setman D., Schafler E., Korznikova E., Zehetbauer M, J Mater. Sci. Eng. A 2008; 493, 116–122.

    Google Scholar 

  10. Schafler E, Steiner G, Korznikova E, Kerber M, Zehetbauer MJ, Mater. Sci. Eng. A 2005;410–411, 169–173.

    Google Scholar 

  11. Korznikova E, Schafler E, Steiner G, Zehetbauer MJ, Proc. 4th Int. Symp. Ultrafine Grained Mater. 2006; 97–102.

    Google Scholar 

  12. Zehetbauer M, Key Eng.Mater. 1994;97–98:287–306.

    Google Scholar 

  13. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT, Mater. Res. Lett. 2016; 4:1–21.

    Google Scholar 

  14. Werbach K, M.Sc. Thesis 2016, University of Vienna, Austria.

    Google Scholar 

  15. Horky J, Ghaffar A, Werbach K, Mingler B., Pogatscher S., Schäublin R., Setman D., Uggowitzer P., Löffler JF., Zehetbauer MJ. 2017, submitted for publication.

    Google Scholar 

  16. Orlov D, Pelliccia D, Fang X, Bourgeois L, Kirby N, Nikulin AY, Ameyama K, Estrin Y, Acta Mater 2014;72:110.

    Google Scholar 

  17. Mima G, Tanaka Y, Trans JIM 1971;12:71.

    Google Scholar 

  18. Clark JB, Acta Metall 1965;13:1281.

    Google Scholar 

  19. Sumner DR, Turner TM, Igloria R, Urban RM, Galante JO, J. Biomech. 1998; 31:909–917.

    Google Scholar 

  20. Nie JF, Metall. Mater. Trans. A 2012;43,3891–3939.

    Google Scholar 

  21. Hofstetter J, Becker M, Martinelli E, Weinberg AM, Mingler B, Kilian H, Pogatscher S, Uggowitzer P J, Loeffler F, JOM 2016; 66:4:566–572.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the use of equipment within the Faculty Center for Nanostructure Research, the Machine Shop and Technical Services at the Faculty of Physics, University Vienna, Austria, as well as the Austrian Institute of Technology (AIT), Wiener Neustadt, Austria for the casting of the Mg bars. We also appreciate financial support from the Austrian Science Funds (FWF) within project I2815-N36 and Slovenian Research Agency (ARRS) through Research Project J2-7157.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ojdanic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ojdanic, A., Schafler, E., Horky, J., Orlov, D., Zehetbauer, M. (2018). Strengthening of a Biodegradable Mg–Zn–Ca Alloy ZX50 After Processing by HPT and Heat Treatment. In: Orlov, D., Joshi, V., Solanki, K., Neelameggham, N. (eds) Magnesium Technology 2018. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72332-7_43

Download citation

Publish with us

Policies and ethics