Skip to main content

Development of BioMg® 250 Bioabsorbable Implant Alloy

  • Conference paper
  • First Online:
Magnesium Technology 2018 (TMS 2018)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

The alloy development of bioabsorbable BioMg® 250 is described in terms of design of mechanical properties, biocorrosion rate and biocompatibility. The basic mechanistic role of microalloyig elements Zn, Ca and Mn is discussed as related to microstructures. In vitro corrosion and in vivo animal studies are reported. Finally, we list potential orthopedic applications in bone fixation devices fabricated from BioMg 250.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xin, X., Hu, T., Chu, P., (2011), In Vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review, Acta Biomatrialia, 7, p. 1452.

    Google Scholar 

  2. Staiger, M., Pietak, A., Huadmai, J., Dias,G., (2006), Magnesium and its alloys as orthopedic materials: a review, Biomaterials, 27, p. 1728.

    Google Scholar 

  3. Hartwig, A., (2001), Role of magnesium in genomic stability, Mutat Res/Fund Mol Mech Mutagen, 457, p. 13.

    Google Scholar 

  4. Wolf, F., Cittadini, A., (2003), Chemistry and biochemistry of magnesium, Mol Aspects Med, 24, p. 3.

    Google Scholar 

  5. Vormann, J., (2003), Magnesium: nutrition and metabolism, Mol Aspects Med, 24, p. 27.

    Google Scholar 

  6. Decker, R., LeBeau, S., Young, S., Patent WO201414145672AI, September 18, 2014.

    Google Scholar 

  7. Yasi, J., Hector, L., Trinkle, D., (2010), First-principles for solid-solution strengthening of Magnesium: From geometry and chemistry to properties, Acta Materialia, 58, p. 5704.

    Google Scholar 

  8. Saal, J., Wolverton, C., (2014), Thermodynamic stability of Mg-based ternary long-period stacking ordered structures, Acta Materialia, 68, p. 325.

    Google Scholar 

  9. Oh-ishi, K., Watanabe, R., Mendis, C., Hono, K., (2009), Age-hardening response of Mg-0.3 at% Ca alloys with different Zn contents, Materials Science and Engineering A, 526, p. 177.

    Google Scholar 

  10. Zeng, Z., Zhu, Y., Xu, S., Bian, M., Davies, C., Birbilis, N. Nie, J., (2016), Texture evolution during static recrystallization of cold-rolled magnesium alloys, Acta Materialia, 105, p. 479.

    Google Scholar 

  11. Yuasa, M., Hayashi, M., Mabuchi, M., Chino, Y., (2014), Improve plastic anisotropy of Mg–Zn–Ca alloys exhibiting high-stretch formability—a first principles study, Acta Materialia, 65, p. 207.

    Google Scholar 

  12. Zeng, Z., Xu, S., Bian, M., Davies, C., Birbilis, N. Nie, J., (2016) Effects of Dilute Additions of Zn and Ca on Ductility of Magnesium Alloys, Materials and Science & Engineering A, 674, p. 459.

    Google Scholar 

  13. Hase, T., Ohhtagaki, T., Yamaguchi, M., Ikeo, N., (2016), Effect of aluminum or zinc solute addition on enhancing impact toughness in Mg–Ca alloys, Acta Materialia, 104, p. 283.

    Google Scholar 

  14. Yoshizawa S, Brown A, Barchowsky A, Sfeir C. (2014), Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomaterialia, 10(6), p. 2834.

    Google Scholar 

  15. Cheng, P., Han, P., Zhao, C., Zhang, S., Wu, H., Ni, J., Peng, J., Zhang, Y., Liu, J., Xu, H., Liu, S., Zhang, X., Zheng, Y., (2016), High Purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF, Biomaterials, 81, p. 14.

    Google Scholar 

  16. Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C., (2005), In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials, 26, p. 3557.

    Google Scholar 

  17. Castellani, C., Lindtner, R., Hausbrandt, P., Tschegg, E., Stanzl-Tschegg, S., Zanoni, G., Beck, S., Weinberg, A., (2011), Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control, Acta Biomaterialia, 7, p. 432.

    Google Scholar 

  18. Dewei-Zhao, M., et al., (2016), Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head, Biomaterials, 81, p. 84.

    Google Scholar 

  19. Yu, Y., et al., Multifunctions of dual Zn/Mg ion-implanted titanium on osteogenesis, angiogenesis and bacterial inhibition for dental implants, Acta Biomaterialia, article in press, 2016.11.067.

    Google Scholar 

  20. Zheng, Y., Magnesium Alloys as Degradable Biomaterials, CRC Press (2016), ISBN-13: 978-1-4665-9804-1.

    Google Scholar 

  21. Kallyanashis, P., Lee, B., Abueva, C., Kim, B., Jun Choi, J., Bae, S., Byong Taek Lee, B., (2017) In vivo evaluation of injectable calcium phosphate cement composed of Zn‐and Si‐incorporated β‐tricalcium phosphate and monocalcium phosphate monohydrate for a critical sized defect of the rabbit femoral condyle, J. Biomedical Materials Research B. Applied Biomaterials, 105, p. 260.

    Google Scholar 

  22. Fielding, G., Bandyopadhyay, A., Bose, S., (2012), Effects of silica and zinc oxide doping on mechanical and biological properties of 3-D printed tricalcium phosphate tissue engineering scaffolds, Dental Materials, 2012, 28, p. 113.

    Google Scholar 

  23. Moreno-Eutimio, M., Nieto-Velazquez, N., Espinosa-Monroy, L., Torres-Ramos, Y., Montoya-Estrada, A., Cueto, J.,,Hicks, J., Acosta-Altamirano, G., (2014), Potent Anti-Inflammatory Activity of Carbohydrate Polymer with Oxide of Zinc, Biomed Res Int, 2014, p. 8.

    Google Scholar 

  24. Molokwu, C., Li, Y., (Fall 2006), Zinc Homeostasis and Bone Density, Ohio Research and Clinical Review, 15, p. 7.

    Google Scholar 

  25. Chou, A., et al, Implant Dentistry, 2007, 16, p. 89.

    Google Scholar 

  26. Yang, F., et al, Oral Surg Oral Med Oral Pathol Oral Radiol, 2012, 113, p. 313.

    Google Scholar 

  27. Ghorbani, F., Kaffashi, B., Shokrollahi, P., Seyedjafari, E., Ardeshirlylajima, A., (2015), PCL/chitisan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation, Carbohydr Polym,118, p. 133.

    Google Scholar 

Download references

Acknowledgements

NanoMag appreciates strong support under NSF Contract 0847198 and NIH Grant 4R44DEO24919-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Decker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Decker, R., LeBeau, S., LaCroix, D., Makiheni, S., Allison, J. (2018). Development of BioMg® 250 Bioabsorbable Implant Alloy. In: Orlov, D., Joshi, V., Solanki, K., Neelameggham, N. (eds) Magnesium Technology 2018. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72332-7_18

Download citation

Publish with us

Policies and ethics