Skip to main content

Surface and Interfacial Energies of Mg17Al12–Mg System

  • Conference paper
  • First Online:

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

For upscale simulation and modeling of magnesium alloys, data of surface and interfacial energies are critical. In this work, we calculated the surface energies of Mg17Al12 β-phase with different surface configurations by using molecular dynamic simulations. Surface terminations were carefully selected to calculate the energy of β-phase. The lowest energy surface for each crystallographic plane was determined by varying the surface termination. The results show that surfaces occupied by higher fraction of magnesium atoms generate lower surface energies. The interfacial energy for Mg17Al12 β-phase and Mg matrix was calculated as well based on the Burger’s orientation relationship. We found that the lowest energy surface of Mg17Al12 does not generate the lowest interfacial energy. The interfacial energy for Mg17Al12 β-phase and a \( \left\{ {10\bar{1}2} \right\} \) twin was also calculated. The interfacial energy increases by ~250 mJ/m2 due to the change in orientation relationship between Mg17Al12 and the matrix after twinning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hirsch J, Al-Samman T (2013) Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater 61:818–843. https://doi.org/10.1016/j.actamat.2012.10.044

  2. Mordike BL, Ebert T (2001) Magnesium: properties—applications—potential. Mater Sci Eng A 302:37–45

    Google Scholar 

  3. Smola B, Stulı́ková I, von Buch F, Mordike BL (2002) Structural aspects of high performance Mg alloys design. Mater Sci Eng A 324:113–117. https://doi.org/10.1016/S0921-5093(01)01291-6

  4. Frank C (2011) Magnesium Alloys-Design, Processing and Properties. Intech: India

    Google Scholar 

  5. Hutchinson CR, Nie J-F, Gorsse S (2005) Modeling the precipitation processes and strengthening mechanisms in a Mg-Al-(Zn) AZ91 alloy. Metall Mater Trans A 36:2093–2105

    Google Scholar 

  6. Celotto S (2000) TEM study of continuous precipitation in Mg–9 wt%Al–1 wt%Zn alloy. Acta Mater 48:1775–1787. https://doi.org/10.1016/S1359-6454(00)00004-5

  7. Zhang M-X, Kelly PM (2003) Crystallography of Mg17Al12 precipitates in AZ91D alloy. Scr Mater 48:647–652. https://doi.org/10.1016/S1359-6462(02)00555-9

  8. Nie J-F (2012) Precipitation and Hardening in Magnesium Alloys. Metall Mater Trans A 43:3891–3939. https://doi.org/10.1007/s11661-012-1217-2

  9. Robson JD, Stanford N, Barnett MR (2013) Effect of Precipitate Shape and Habit on Mechanical Asymmetry in Magnesium Alloys. Metall Mater Trans A 44:2984–2995. https://doi.org/10.1007/s11661-012-1466-0

  10. Liao M, Li B, Horstemeyer MF (2013) Interaction between prismatic slip and a Mg17Al12 precipitate in magnesium. Comput Mater Sci 79:534–539. https://doi.org/10.1016/j.commatsci.2013.07.016

  11. Liao M, Li B, Horstemeyer MF (2014) Interaction Between Basal Slip and a Mg17Al12 Precipitate in Magnesium. Metall Mater Trans A 45:3661–3669. https://doi.org/10.1007/s11661-014-2284-3

  12. Li B, Zhang XY (2016) Twinning with zero twinning shear. Scr Mater 125:73–79. https://doi.org/10.1016/j.scriptamat.2016.07.004

  13. Salman SA, Ichino R, Okido M (2010) A Comparative Electrochemical Study of AZ31 and AZ91 Magnesium Alloy. Int J Corros 2010:1–7. https://doi.org/10.1155/2010/412129

  14. Zhao M-C, Liu M, Song G, Atrens A (2008) Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91. Corros Sci 50:1939–1953. https://doi.org/10.1016/j.corsci.2008.04.010

  15. Lü YZ, Wang QD, Ding WJ, et al (2000) Fracture behavior of AZ91 magnesium alloy. Mater Lett 44:265–268

    Google Scholar 

  16. Han G, Han Z, Alan AL, et al (2013) PHASE field simulation on morphology of continuous precipitate Mg17Al12 in Mg–Al alloy. Acta Metall Sin 49:277. https://doi.org/10.3724/SP.J.1037.2012.00531

  17. Han G, Han Z, Luo AA, Liu B (2014) Three-Dimensional Phase-Field Simulation and Experimental Validation of β-Mg17Al12 Phase Precipitation in Mg-Al-Based Alloys. Metall Mater Trans A 46:948–962. https://doi.org/10.1007/s11661-014-2674-6

  18. Han Z, Han G, Luo AA, Liu B (2015) Large-scale three-dimensional phase-field simulation of multi-variant β-Mg17Al12 in Mg–Al-based alloys. Comput Mater Sci 101:248–254. https://doi.org/10.1016/j.commatsci.2015.01.038

  19. Li M, Ruijie Z, John A (2010) Modeling Casting and Heat Treatment Effects on Microstructure in Super Vacuum Die Casting (SVDC) AZ91 Magnesium Alloy. In: Magnes. Technol. 2010 Proc. Symp. Held Tms 2010 Annu. Meet. Exhib. Minerals, Metals and Materials Society, pp 623–627

    Google Scholar 

  20. Xiao W, Zhang X, Geng WT, Lu G (2013) Atomistic study of plastic deformation in Mg–Al alloys. Mater Sci Eng A 586:245–252. https://doi.org/10.1016/j.msea.2013.07.093

  21. Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33:7983

    Google Scholar 

  22. Liu X-Y, Ohotnicky PP, Adams JB, et al (1997) Anisotropic surface segregation in Al–Mg alloys. Surf Sci 373:357–370

    Google Scholar 

  23. Curtin WA, Olmsted DL, Hector LG (2006) A predictive mechanism for dynamic strain ageing in aluminium-magnesium alloys. Nat Mater Lond 5:875–80. http://dx.doi.org/10.1038/nmat1765

  24. Olmsted DL, Jr LGH, Curtin WA, Clifton RJ (2005) Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys. Model Simul Mater Sci Eng 13:371. https://doi.org/10.1088/0965-0393/13/3/007

  25. Jones R, Baer D, Danielson M, Vetrano J (2001) Role of Mg in the stress corrosion cracking of an Al–Mg alloy. Metall Mater Trans A 32:1699–1711

    Google Scholar 

  26. Jelinek B, Groh S, Horstemeyer MF, et al (2012) Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys. Phys Rev B 85:245102. https://doi.org/10.1103/PhysRevB.85.245102

  27. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model Simul Mater Sci Eng 18:015012

    Google Scholar 

  28. Ning H, Zhou Z, Zhang Z, et al (2017) Hydrogen dissociation and incorporation on Mg17Al12(100) surface: A density functional theory study. Appl Surf Sci 396:851–856. https://doi.org/10.1016/j.apsusc.2016.11.041

  29. Zhang J-M, Ma F, Xu K-W (2003) Calculation of the surface energy of bcc metals by using the modified embedded-atom method. Surf Interface Anal 35:662–666. https://doi.org/10.1002/sia.1587

  30. Zhang J-M, Ma F, Xu K-W (2004) Calculation of the surface energy of FCC metals with modified embedded-atom method. Appl Surf Sci 229:34–42. https://doi.org/10.1016/j.apsusc.2003.09.050

  31. Liu B-Y, Wang J, Li B, et al (2014) Twinning-like lattice reorientation without a crystallographic twinning plane. Nat Commun. https://doi.org/10.1038/ncomms4297

Download references

Acknowledgements

Bin Li gratefully thanks support from the U.S. National Science Foundation (CMMI-1635088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangxi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, F., Li, B. (2018). Surface and Interfacial Energies of Mg17Al12–Mg System. In: Orlov, D., Joshi, V., Solanki, K., Neelameggham, N. (eds) Magnesium Technology 2018. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72332-7_10

Download citation

Publish with us

Policies and ethics