Advertisement

Modelling of Human Infections

  • Gennady BocharovEmail author
  • Vitaly Volpert
  • Burkhard Ludewig
  • Andreas Meyerhans
Chapter

Abstract

In this chapter, we illustrate the application of mathematical models and computational analyses tools of various complexities to the description and explanation of some observed phenotypes of viral infections in humans, such as HIV and HBV infections. Specifically, we try to gain a deeper understanding of the sensitivity of infection dynamics to growth rate and the efficacy of antigen presentation by APCs, the phenomenon of spontaneous recovery from HBV infection, and the kinetic determinants of a low-level (i.e. below the detection threshold) HBV persistence. The material of this chapter is based on our previous work published in [3, 12, 13, 14, 33].

References

  1. 1.
    Zinkernagel R.M., Hengartner H., Stitz L.. On the role of viruses in the evolution of immune responses. British Medical Bulletin , 41 (1985) 92–97.Google Scholar
  2. 2.
    Grossman Z., Paul, W.E. Autoreactivity, dynamic tuning and selectivity, Curr. Opin. Immunol., 13 (2001) 687–698.Google Scholar
  3. 3.
    Sester U, Sester M, Kohler H, Pees HW, Gartner BC, Wain-Hobson S, Bocharov G, Meyerhans A. Maintenance of HIV-specific central and effector memory CD4 and CD8 T cells requires antigen persistence. AIDS Res Hum Retroviruses. 2007; 23(4):549–553.Google Scholar
  4. 4.
    Moskophidis D, Lechner F, Pircher H, Zinkernagel RM: Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 1993, 362:758–761.Google Scholar
  5. 5.
    Germain, R. N. 2001. The art of the probable: system control in the adaptive immune system. Science 293:240–245.Google Scholar
  6. 6.
    Marchuk GI. Mathematical Models in Immunology. New York, Optimization Software, Inc., 1983. 378 pp.Google Scholar
  7. 7.
    B. Rehermann, C. Ferrari, C. Pasquinelli, and F. V. Chisari. The hepatitis B virus persists for decades after patients’ recovery from acute viral hepatitis despite active maintenance of a cytotoxic T-lymphocyteresponse. Nature Med., 2:1104–1108, 1996.Google Scholar
  8. 8.
    G. J. Webster, S. Reignat, M. K. Maini, S. A. Whalley, G. S. Ogg, A. S. King, D. Brown, P. L. Amlot, R. Williams, G. M. Dusheiko, and A. Bertoletti. Incubation phase of acute hepatitis B in man: dynamics of cellular immune mechanisms. Hepatology, 32:1117–1124, 2000.Google Scholar
  9. 9.
    Whalley, S. A., J. M. Murray, D. Brown, G. J. Webster, V. C. Emery, G. M. Dusheiko, and A. S. Perelson. 2001. Kinetics of acute hepatitis B virus infection in humans. J. Exp. Med. 193:847–854.Google Scholar
  10. 10.
    R. M. Zinkernagel. What is missing in immunology to understand immunity? Nature Immunology, 1:181–185, 2000.Google Scholar
  11. 11.
    A. Altinbas, Y. Yüksel, M. Pamukcu, F. Ekiz, Ö. Basar, O. Yüksel, Spontaneous HBsAg seroconversion after severe flare of chronic hepatitis B infection, Annals Hepatology. 9 (2010) 194–197.Google Scholar
  12. 12.
    Tatyana Luzyanina, Dirk Roose and Gennady Bocharov Numerical bifurcation analysis of immunological models with time delays J. Comput. Appl. Math. 184 (2005): 165–176.Google Scholar
  13. 13.
    Tatyana Luzyanina, Gennady Bocharov. Stochastic modelling of the impact of random forcing on persistent hepatitis B virus infection. Mathematics and Computers in Simulation, 96 (2014): 54–65.Google Scholar
  14. 14.
    G. Bocharov, B. Ludewig, A. Bertoletti, P. Klenerman, T. Junt, T. Luzyanina, C. Fraser, R.M. Anderson, Underwhelming the immune response: effect of slow virus growth rates on CD8+ T lymphocyte responses, J. Virol. 78 (2004) 2247–2254.Google Scholar
  15. 15.
    F.V. Chisari, M. Isogawa, S.F. Wieland, Pathogenesis of hepatitis B virus infection, Pathol. Biol. (Paris). 58 (2010) 258-266.Google Scholar
  16. 16.
    S.W. Cho, J.Y. Cheong, Y.S. Ju, D.H. Oh, Y.J. Suh, K.W. Lee, Human leukocyte antigen class II association with spontaneous recovery from hepatitis B virus infection in korenas: Analysis at the haplotype level, J. Korean Med. Sci. 23 (2008) 838–844.Google Scholar
  17. 17.
    D. J. Higham, P. E. Kloeden, MAPLE and MATLAB for stochastic differential equations in finance, in S. S. Nielsen (Ed.), Programming Languages and Systems in Computational Economics and Finance, volume 18 of Advances in Computational Economics, Kluwer Academic Publishers, 2002, pp. 233–270.Google Scholar
  18. 18.
    P. E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, 1999.Google Scholar
  19. 19.
    M.K. Maini, C. Boni, C.K. Lee, J.R. Larrubia, S. Reignat, G.S. Ogg, A.S. King, J. Herberg, R. Gilson, A. Alisa, R. Williams, D. Vergani, N.V. Naoumov, C. Ferrari, A. Bertoletti, The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection, J. Exp. Med. 191 (2000) 1269–1280.Google Scholar
  20. 20.
  21. 21.
    M.A. Nowak, C.R. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996) 74–79.Google Scholar
  22. 22.
    U. Picchini, SDE-Toolbox: Simulation and Estimation of Stochastic Differential Equations with MATLAB, Technical Report, 2007. Available from http://sdetoolbox.sourceforge.net.
  23. 23.
    A.T. Tan, S. Koh, W. Goh, H.Y. Zhe, A.J. Gehring, S.G. Lim, A. Bertoletti, A longitudinal analysis of innate and adaptive immune profile during hepatic flares in chronic hepatitis B, J. Hepatol. 52 (2010) 330–339.Google Scholar
  24. 24.
    G.J. Webster, S. Reignat, D. Brown, G.S. Ogg, L. Jones, S.L. Seneviratne, R. Williams, G. Dusheiko, A. Bertoletti, Longitudinal analysis of CD8+ T cells specific for structural and nonstructural hepatitis B virus proteins in patients with chronic hepatitis B: implications for immunotherapy, J Virol. 78 (2004) 5707–5719.Google Scholar
  25. 25.
    Bocharov G.A., Marchuk G.I., Romanyukha A.A. Numerical solution by LMMs of stiff delay differential systems modelling and immune response. Numer. Math. (1996) 73, 131–148.Google Scholar
  26. 26.
    Doherty P.C. Some problem areas in the interaction between viruses and the immune system. Immunol. Cell Biol. (1986) 65, 279–286.Google Scholar
  27. 27.
    Fong T., Di Bisceglie A.M., Biswas R., Waggoner J., Wilson L., Clagget J., Hoofnagle J.H. High levels of viral replication during acute hepatitis B infection predict progression to chronicity. J. Med. Virol. (1994) 43, 155–158.Google Scholar
  28. 28.
    Grossman Z., Min B., Meier-Schellersheim M., and Paul W. Concomitant regulation of T-cell activation and homeostasis. NATURE REVIEWS Immunology (2004) 4, 7–15.Google Scholar
  29. 29.
    Marchuk G.I. Mathematical models of immune response in infectious diseases. – Dordrecht: Kluwer Press, 1997.Google Scholar
  30. 30.
    Marchuk G.I. Adjoint equations and the sensitivity of functionals. Earth. Obs. Rem. Sens. (1999) 15, 645–677.Google Scholar
  31. 31.
    Marchuk G.I., Petrov R.V., Romanyukha A.A., Bocharov G.A. Mathematical model of antiviral immune response I. Data analysis, generalized picture construction and parameters evaluation for hepatitis B. J. Theoret. Biol. (1991) 151, 1–40.Google Scholar
  32. 32.
    Marchuk G.I., Romanyukha A.A., Bocharov G.A. Mathematical model of antiviral immune response II. Parameter indentification for acute viral hepatitis B. J. Theoret. Biol. (1991) 151, 41–70.Google Scholar
  33. 33.
    G.I. Marchuk, V. Shutyaev and G. Bocharov. Adjoint equations and analysis of complex systems: application to virus infection modeling. J. Comput. Appl. Math. 184 (2005): 177–204.Google Scholar
  34. 34.
    Pontryagin, L. S., Selected Works, Nauka, Moscow, 1988 (in Russian).Google Scholar
  35. 35.
    Pupko, V. Ya., Zrodnikov, A. V., and Likhachev, Yu. I., The Adjoint Function Method in Physics and Engineering, Energoatomizdat, Moscow, 1984 (in Russian).Google Scholar
  36. 36.
    Schrödinger E. Quantisierung als Eigenwertproblem. Ann. Phys. (1926) 80, 437–490.Google Scholar
  37. 37.
    Shutyaev V. An algorithm for computing functionals for a class of nonlinear problems using the adjoint equation. Sov. J. Numer. Anal. Math. Modelling (1991) 6, 169–178.Google Scholar
  38. 38.
    Shutyaev V. Control operators and iterative algorithms for variational data assimilation problems., Nauka, Moscow, 2001 (in Russian).Google Scholar
  39. 39.
    Bell G.I. Predator-prey equations simulating an immune response. Mathematical Biosciences. 1973; 16 (3–4), 291–314.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gennady Bocharov
    • 1
    Email author
  • Vitaly Volpert
    • 2
    • 3
  • Burkhard Ludewig
    • 4
  • Andreas Meyerhans
    • 5
  1. 1.Marchuk Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Institut Camille Jordan, UMR 5208 CNRSCentre National de la Recherche Scientifique (CNRS)VilleurbanneFrance
  3. 3.RUDN UniversityMoscowRussia
  4. 4.Institute of ImmunobiologyKantonsspital St. GallenSt. GallenSwitzerland
  5. 5.Parc de Recerca Biomedica BarcelonaICREA and Universitat Pompeu FabraBarcelonaSpain

Personalised recommendations