Advertisement

Modelling of Experimental Infections

  • Gennady BocharovEmail author
  • Vitaly Volpert
  • Burkhard Ludewig
  • Andreas Meyerhans
Chapter

Abstract

This chapter aims to give a clear idea of how mathematical analysis for experimental systems could help in the process of data assimilation, parameter estimation and hypothesis testing.

References

  1. 1.
    Bocharov, G.A. Modelling the dynamics of LCMV infection in mice: conventional and exhaustive CTL responses. J. Theor. Biol., 192 (1998) 283–308.Google Scholar
  2. 2.
    Luzyanina T, Engelborghs K, Ehl S, Klenerman P, Bocharov G. Low level viral persistence after infection with LCMV: a quantitative insight through numerical bifurcation analysis. Math Biosci. 2001 ;173(1):1–23.Google Scholar
  3. 3.
    Bocharov G, Zst R, Cervantes-Barragan L, Luzyanina T, Chiglintsev E, Chereshnev VA, Thiel V, Ludewig B. A systems immunology approach to plasmacytoid dendritic cell function in cytopathic virus infections. PLoS Pathog. 2010 ;6(7):e1001017.Google Scholar
  4. 4.
    Bocharov G, Quiel J, Luzyanina T, Alon H, Chiglintsev E, Chereshnev V, Meier-Schellersheim M, Paul WE, Grossman Z. Feedback regulation of proliferation vs. differentiation rates explains the dependence of CD4 T-cell expansion on precursor number. Proc Natl Acad Sci U S A. 2011 ;108(8):3318–3323Google Scholar
  5. 5.
    Doherty PC, Zinkernagel RM: H-2 compatibility is required for T-cell-mediated lysis of target cells infected with lymphocytic choriomeningitis virus. J Exp Med 1975, 141:502–507.Google Scholar
  6. 6.
    Zinkernagel RM, Doherty PC: Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 1974, 248:701–702.Google Scholar
  7. 7.
    Kagi D, Ledermann B, Burki K, Seiler P, Odermatt B, Olsen KJ, Podack ER, Zinkernagel RM, Hengartner H: Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 1994, 369:31–37.Google Scholar
  8. 8.
    Masson D, Tschopp J: Isolation of a lytic, pore-forming protein (perforin) from cytolytic T-lymphocytes. J Biol Chem 1985, 260:9069–9072.Google Scholar
  9. 9.
    Ehl S, Klenerman P, Zinkernagel RM, Bocharov G: The impact of variation in the number of CD8(+) T-cell precursors on the outcome of virus infection. Cell Immunol 1998, 189:67–73.Google Scholar
  10. 10.
    Waggoner SN, Cornberg M, Selin LK, Welsh RM: Natural killer cells act as rheostats modulating antiviral T cells. Nature 2012, 481:394–398.Google Scholar
  11. 11.
    Karrer U, Althage A, Odermatt B, Roberts CW, Korsmeyer SJ, Miyawaki S, Hengartner H, Zinkernagel RM: On the key role of secondary lymphoid organs in antiviral immune responses studied in alymphoplastic (aly/aly) and spleenless (Hox11(-)/-) mutant mice. J Exp Med 1997, 185:2157–2170.Google Scholar
  12. 12.
    Cole GA, Nathanson N, Prendergast RA: Requirement for theta-bearing cells in lymphocytic choriomeningitis virus-induced central nervous system disease. Nature 1972, 238:335–337.Google Scholar
  13. 13.
    Kim JV, Kang SS, Dustin ML, McGavern DB: Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 2009, 457:191–195.Google Scholar
  14. 14.
    Riviere Y, Gresser I, Guillon JC, Tovey MG: Inhibition by anti-interferon serum of lymphocytic choriomeningitis virus disease in suckling mice. Proc Natl Acad Sci U S A 1977, 74:2135–2139.Google Scholar
  15. 15.
    Chen HD, Fraire AE, Joris I, Brehm MA, Welsh RM, Selin LK: Memory CD8+ T cells in heterologous antiviral immunity and immunopathology in the lung. Nat Immunol 2001, 2:1067–1076.Google Scholar
  16. 16.
    Ohashi PS, Oehen S, Buerki K, Pircher H, Ohashi CT, Odermatt B, Malissen B, Zinkernagel RM, Hengartner H: Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 1991, 65:305–317.Google Scholar
  17. 17.
    Oldstone MB, Nerenberg M, Southern P, Price J, Lewicki H: Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 1991, 65:319–331.Google Scholar
  18. 18.
    Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R: Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006, 439:682–687.Google Scholar
  19. 19.
    Moskophidis D, Lechner F, Pircher H, Zinkernagel RM: Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 1993, 362:758–761.Google Scholar
  20. 20.
    Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, Subramaniam S, Blattman JN, Barber DL, Ahmed R: Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 2007, 27:670–684.Google Scholar
  21. 21.
    Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, Ahmed R: Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 1998, 188:2205–2213.Google Scholar
  22. 22.
    Leavy O: Tumour immunology: A triple blow for cancer. Nat Rev Immunol 2015, 15:265.Google Scholar
  23. 23.
    Trautmann L, Janbazian L, Chomont N, Said EA, Gimmig S, Bessette B, Boulassel MR, Delwart E, Sepulveda H, Balderas RS, et al: Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med 2006, 12:1198–1202.Google Scholar
  24. 24.
    Velu V, Titanji K, Zhu B, Husain S, Pladevega A, Lai L, Vanderford TH, Chennareddi L, Silvestri G, Freeman GJ, et al: Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature 2009, 458:206–210.Google Scholar
  25. 25.
    Moskophidis D, Lechner F, Pircher H, Zinkernagel RM. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature. 1993;362(6422):758–761Google Scholar
  26. 26.
    Wherry EJ, Kurachi M: Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 2015, 15:486–499.Google Scholar
  27. 27.
    A. Ciurea, P. Klenerman, L. Hunziker, E. Horvath, B. Odermatt, A. F. Ochsenbein, H. Hengartner, and R. M. Zinkernagel. Persistence of lymphocytic choriomeningitis virus at very low levels in immune mice. Proc. Natl. Acad. Sci. USA, 96:11964–11969, 1999.Google Scholar
  28. 28.
    A. J. Zajac, J. N. Blattman, K. Murali-Krishna, D. J. D. Sourdive, M. Suresh, J. D. Altman, and R. Ahmed. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med., 188:2205–2213, 1998.Google Scholar
  29. 29.
    R. Ahmed, L. A. Morrison, and D. M. Knipe. Viral persistence. In N. Nathanson et al., editor, Viral Pathogenesis, pages 181–205. Lippincott-Raven Publishers, Philadelphia, 1997.Google Scholar
  30. 30.
    M. B. A. Oldstone. Viral persistence. Cell, 56:517–520, 1989.Google Scholar
  31. 31.
    D. Tortorella, B. E. Gewurz, M. H. Furman, D. J. Schust, and H. L. Ploegh. Viral subversion of the immune system. Ann. Rev. Immunol., 18:861–926, 2000.Google Scholar
  32. 32.
    R. Ahmed, B. D. Jamieson, and D. D. Porter. Immune therapy of a persistent and disseminated viral infection. J. Virol., 61:3920–3929, 1987.Google Scholar
  33. 33.
    O. Planz, S. Ehl, E. Furrer, E. Horvath, M.-A. Bründler, H. Hengartner, and R. M. Zinkernagel. A critical role of neutralizing-antibody-producing B cells, CD\(4^+\) T cells and interferons in persistent and acute infections of mice with lymphocytic choriomeningitis virus: Implications for adoptive immunotherapy of virus carriers. Proc. Natl. Acad. Sci. USA, 94:6874–6879, 1997.Google Scholar
  34. 34.
    K. Engelborghs. DDE-BIFTOOL: a Matlab package for bifurcation analysis of delay differential equations. Department of Computer Science, Katholieke Universiteit Leuven, Belgium, March 2000. Report TW 305, (http://www.cs.kuleuven.ac.be/~koen/delay/ddebiftool.shtml).
  35. 35.
    K. Engelborghs. Numerical bifurcation analysis of delay differential equations. Ph.D. thesis, Department of Computer Science, Katholieke Universiteit Leuven, Belgium, 2000.Google Scholar
  36. 36.
    K. Engelborghs and D. Roose. On stability of LMS methods and characteristic roots of delay differential equations. Submitted, 2000.Google Scholar
  37. 37.
    K. Engelborghs and E. J. Doedel. Stability of piecewise polynomial collocation methods for computing periodic solutions of delay differential equations. Submitted, 2000.Google Scholar
  38. 38.
    K. Engelborghs, T. Luzyanina, K. in’t Hout, and D. Roose. Collocation methods for the computation of periodic solutions of delay differential equations. SIAM J. Sci. Comput., 22:1593–1609, 2000.Google Scholar
  39. 39.
    F. Lehmann-Grube. Lymphocytic Choriomeningitis Virus. New York:Springer-Verlag, 1971.Google Scholar
  40. 40.
    Mims, C.A. (1995). Mims Pathogenesis of Infectious Disease. London: Academic Press.Google Scholar
  41. 41.
    Zinkernagel, R.M. and Hengartner H. (1997). Antiviral immunity. Immunol. Today 18, 258–260.Google Scholar
  42. 42.
    Kägi, D., Odermatt, B., Seiler, P., Zinkernagel, R. M., Mak, T.W. Hengartner, H. (1997). Reduced incidence and delayed onset of diabetis in perforindeficient nonobese diabetic mice. J. Exp. Med. 186, 989–997.Google Scholar
  43. 43.
    Ludewig, B., Odermatt, B., Landmann, S. Hengartner, H. and Zinkernagel, R.M. (1998). Dendritic cells induce autoimmune diabetis and maintain disease via de novo formation of local lymphoid tissue. J. Exp. Med. 188, 1–9.Google Scholar
  44. 44.
    Binder, D., van den Broek, M. F., Kägi, D., Bluethmann, Fehr, J., Hengartner, H. and Zinkernagel, R.M. (1998). Aplastic anemia rescued by exhaustion of cytokine-secreting CD8+ T cells in persistent infection with lymphocytic choriomeningitis virus. J. Exp. Med. 187, 1903–1920Google Scholar
  45. 45.
    Oldstone, M.B.A., Blount, P., Southern, P.J. and Lampert, P.W. (1986). Cytoimmunotherapy for persistent virus infection reveals a unique clearance pattern from the central nervous system. Nature, 321, 239–243.Google Scholar
  46. 46.
    Zinkernagel, R.M. (1993). Immunity to viruses. In: Fundamental Immunology, 3rd. Edn. (Paul, W., ed.), Chap. 34, pp. 1211–1250. New York: Raven Press.Google Scholar
  47. 47.
    Zinkernagel, R.M., Haenseler, E., Leist, T., Cerny, A., Hengartner, H. and Althage, A. (1986). T cell-mediated hepatitis in mice infected with lymphocytic choriomeningitis virus. J. Exp. Med. 164, 1075–1092.Google Scholar
  48. 48.
    Zinkernagel, R.M., Planz, O., Ehl, S., Battegay, M., Odermatt, B., Klenerman, P. and Hengartner, H. (1999). General and specific immunosuppression caused by antiviral T-cell responses. Immunol. Reviews 168,305–315.Google Scholar
  49. 49.
    Odermatt, B., Eppler, M., Leist, T.P., Hengartner, H. and Zinkernagel, R.M. (1991) Virus-triggered acquired immunodeficiency by cytotoxic T-cell-dependent destruction of antigen-presenting cells and lymph node follicle structure. Proc. Natl. Acad. Sci. USA, 88, 8252–8256.Google Scholar
  50. 50.
    Jacquez, J.A. and Simon, C.P. (1993). Qualitative theory of compartmental systems. SIAM Review, 35, 43–79.Google Scholar
  51. 51.
    Bocharov G, Klenerman P, Ehl S. Modelling the dynamics of LCMV infection in mice: II. Compartmental structure and immunopathology. J Theor Biol. 2003 Apr 7;221(3):349–378. Erratum in: J Theor Biol. 2004 Jan 7;226(1):123Google Scholar
  52. 52.
    Pardoll, D. M., Spinning molecular immunology into successful immunotherapy. Nat. Rev. Immunol. 2002. 2: 227–238.Google Scholar
  53. 53.
    Steinman, R. M. and Pope, M., Exploiting dendritic cells to improve vaccine efficacy. J. Clin. Invest 2002. 109: 1519–1526.Google Scholar
  54. 54.
    Schuler, G., Schuler-Thurner, B. and Steinman, R. M., The use of dendritic cells in cancer immunotherapy. Curr. Opin. Immunol. 2003. 15: 138–147.Google Scholar
  55. 55.
    Ludewig, B., Ehl, S., Karrer, U., Odermatt, B., Hengartner, H. and Zinkernagel, R. M., Dendritic cells efficiently induce protective antiviral immunity. J. Virol. 1998. 72: 3812–3818.Google Scholar
  56. 56.
    Ludewig, B., Ochsenbein, A. F., Odermatt, B., Paulin, D., Hengartner, H. and Zinkernagel, R. M., Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J. Exp. Med. 2000. 191: 795–804.Google Scholar
  57. 57.
    Ludewig, B., Barchiesi, F., Pericin, M., Zinkernagel, R. M., Hengartner, H. and Schwendener, R. A., In vivo antigen loading and activation of dendritic cells via a liposomal peptide vaccine mediates protective antiviral and anti-tumour immunity. Vaccine 2000. 19: 23–32.Google Scholar
  58. 58.
    Nair, S. K., Boczkowski, D., Morse, M., Cumming, R. I., Lyerly, H. K. and Gilboa, E., Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat. Biotechnol. 1998. 16: 364–369.Google Scholar
  59. 59.
    Rea, D., Havenga, M. J., van Den Assem, M., Sutmuller, R. P., Lemckert, A., Hoeben, R. C., Bout, A., Melief, C. J. and Offringa, R., Highly efficient transduction of human monocytederived dendritic cells with subgroup B fiber-modified adenovirus vectors enhances transgene-encoded antigen presentation to cytotoxic T cells. J. Immunol. 2001. 166: 5236–5244.Google Scholar
  60. 60.
    Hsu, F. J., Benike, C., Fagnoni, F., Liles, T. M., Czerwinski, D., Taidi, B., Engleman, E. G. and Levy, R., Vaccination of patients with B cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. 1996. 2: 52–58.Google Scholar
  61. 61.
    Nestle, F. O., Alijagic, S., Gilliet, M., Sun, Y., Grabbe, S., Dummer, R., Burg, G. and Schadendorf, D., Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med. 1998. 4: 328–332.Google Scholar
  62. 62.
    Fong, L. and Engleman, E. G., Dendritic cells in cancer immunotherapy. Annu. Rev. Immunol. 2000. 18: 245–273.Google Scholar
  63. 63.
    Ludewig, B., Bonilla, W. V., Dumrese, T., Odermatt, B., Zinkernagel, R. M. and Hengartner, H., Perforin-independent regulation of dendritic cell homeostasis by CD8(+) T cells in vivo: implications for adaptive immunotherapy. Eur. J. Immunol. 2001. 31: 1772–1779.Google Scholar
  64. 64.
    Ludewig, B., Oehen, S., Barchiesi, F., Schwendener, R. A., Hengartner, H. and Zinkernagel, R. M., Protective antiviral cytotoxic T cell memory is most efficiently maintained by restimulation via dendritic cells. J. Immunol. 1999. 163: 1839–1844.Google Scholar
  65. 65.
    Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. and Schreiber, R. D., Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 2002. 3: 991–998.Google Scholar
  66. 66.
    Brossart, P., Zobywalski, A., Grunebach, F., Behnke, L., Stuhler, G., Reichardt, V. L., Kanz, L. and Brugger, W., Tumor necrosis factor alpha and CD40 ligand antagonize the inhibitory effects of interleukin 10 on T cell stimulatory capacity of dendritic cells. Cancer Res. 2000. 60: 4485–4492.Google Scholar
  67. 67.
    De Boer, R. J. and Perelson, A. S., Towards a general function describing T cell proliferation. J. Theor. Biol. 1995. 175: 567–576.Google Scholar
  68. 68.
    Borghans, J. A., Taams, L. S., Wauben, M. H. and De Boer, R. J., Competition for antigenic sites during T cell proliferation: a mathematical interpretation of in vitro data. Proc. Natl. Acad. Sci. USA 1999. 96: 10782–10787.Google Scholar
  69. 69.
    Ronchese, F. and Hermans, I. F., Killing of dendritic cells: a life cut short or a purposeful death? J. Exp. Med. 2001. 194: F23–F26.Google Scholar
  70. 70.
    Ludewig, B., Krebs, P., Junt, T. and Bocharov, G., Dendritic cell homeostasis in the regulation of self-reactivity. Curr. Pharm. Des. 2003. 9: 221–231.Google Scholar
  71. 71.
    Perelson, A. S., Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2002. 2: 28–36.Google Scholar
  72. 72.
    Chakraborty, A. K., Dustin, M. L. and Shaw, A. S., In silico models for cellular and molecular immunology: successes, promises and challenges. Nat. Immunol. 2003. 4: 933–936.Google Scholar
  73. 73.
    Komarova, N. L., Barnes, E., Klenerman, P. and Wodarz, D., Boosting immunity by antiviral drug therapy: a simple relationship among timing, efficacy, and success. Proc. Natl. Acad. Sci. USA 2003. 100: 1855–1860.Google Scholar
  74. 74.
    Barchet W, Cella M, Colonna M (2005) Plasmacytoid dendritic cellsvirus experts of innate immunity. Semin Immunol 17: 253–261.Google Scholar
  75. 75.
    Perlman S, Netland J (2009) Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 7: 439–450.Google Scholar
  76. 76.
    Cervantes-Barragan L, Zust R, Weber F, Spiegel M, Lang KS, et al. (2007) Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon. Blood 109: 1131–1137.Google Scholar
  77. 77.
    Lang PA, Cervantes-Barragan L, Verschoor A, Navarini AA, Recher M, et al. (2009) Hematopoietic cell-derived interferon controls viral replication and virusinduced disease. Blood 113: 1045–1052.Google Scholar
  78. 78.
    Cervantes-Barragan L, Kalinke U, Zust R, Konig M, Reizis B, et al. (2009) Type I IFN-mediated protection of macrophages and dendritic cells secures control of murine coronavirus infection. J Immunol 182: 1099–1106.Google Scholar
  79. 79.
    Quiel J, Caucheteux S, Laurence A, Singh NJ, Bocharov G, Ben-Sasson SZ, Grossman Z, Paul WE. Antigen-stimulated CD4 T-cell expansion is inversely and log-linearly related to precursor number. Proc Natl Acad Sci U S A. 2011 ;108(8):3312–3317Google Scholar
  80. 80.
    Grossman Z, Paul WE: Dynamic tuning of lymphocytes: physiological basis, mechanisms, and function. Annu Rev Immunol 2015, 33:677–713.Google Scholar
  81. 81.
    Grossman, Z., Min, B., Meier-Schellersheim, M. and Paul, W. E., Concomitant regulation of T cell activation and homeostasis. Nat. Rev. Immunol. 2004. 4: 7–15.Google Scholar
  82. 82.
    Grossman Z. Recognition of self and regulation of specificity at the level of cell populations. Immunol Rev (1984) 79:119–138.Google Scholar
  83. 83.
    De Boer RJ, Perelson AS. Antigen-stimulated CD4 T cell expansion can be limited by their grazing of peptide-MHC complexes. J Immunol. 2013 Jun 1;190(11):5454–5458. https://doi.org/10.4049/jimmunol.1203569.
  84. 84.
    Ludewig B, Krebs P, Junt T, Metters H, Ford NJ, Anderson RM, Bocharov G. Determining control parameters for dendritic cell-cytotoxic T lymphocyte interaction. Eur J Immunol. 2004;34(9):2407–2418.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gennady Bocharov
    • 1
    Email author
  • Vitaly Volpert
    • 2
    • 3
  • Burkhard Ludewig
    • 4
  • Andreas Meyerhans
    • 5
  1. 1.Marchuk Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Institut Camille Jordan, UMR 5208 CNRSCentre National de la Recherche Scientifique (CNRS)VilleurbanneFrance
  3. 3.RUDN UniversityMoscowRussia
  4. 4.Institute of ImmunobiologyKantonsspital St. GallenSt. GallenSwitzerland
  5. 5.Parc de Recerca Biomedica BarcelonaICREA and Universitat Pompeu FabraBarcelonaSpain

Personalised recommendations