Skip to main content

Parameter Estimation and Model Selection

  • Chapter
  • First Online:
Book cover Mathematical Immunology of Virus Infections

Abstract

In this chapter, we illustrate a data-driven methodology to formulation and calibration of mathematical models of immune responses. The maximum likelihood approach to parameter estimation, Tikhonov regularization method and information-theoretic criteria for model ranking and selection are presented for models formulated with ODEs, DDEs and PDEs. Experimental data on CFSE-based proliferation analysis of T cells and LCMV–CTL dynamics in a low dose experimental infection of mice are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With little amendment we can consider the case where different components \(\{ {y}^{i}_j\}_{j=1}^{N_i}\) are associated with i-dependent times \(\{ {{\mathfrak t}}_j^i \}_{j=1}^{N_i}\).

  2. 2.

    Material of sects. 3.2.1–3.2.2 uses the results of the study Journal of Computational and Applied Mathematics, Vol. 184, C.T.H. Baker et al., Computational approaches to parameter estimation and model selection in immunology. Pages 50–76, Copyright \(\copyright \) 2005 with permission from Elsevier.

  3. 3.

    The data are regarded as fixed and assumed to have errors of a certain type.

  4. 4.

    The Akaike criterion is based upon Kullback–Leibler notion of information or distance between two probabilistic models (information loss) [99] approximated using the maximum likelihood estimation [98, 100].

  5. 5.

    Some modellers introduce as a variable the amount of virus-specific memory CTL, a subset of (ii) that is harder to quantify reliably.

References

  1. Baker, C.T.H., Bocharov, G.A., Paul, C.A.H., Rihan, F.A., Computational modelling with functional differential equations: identification, selection and sensitivity, Appl. Numer. Math., 53 (2005) 107–129.

    Google Scholar 

  2. Baker, C.T.H., Bocharov, G.A., Ford, J.M., Lumb, P.M., Norton, S.J., Paul, C.A.H., Junt, T., Krebs, P., Ludewig, B., Computational approach to parameter estimation and model selection in immunology, J. Comput. Appl. Math., 184 (2005) 50–76.

    Google Scholar 

  3. Andrew, S.M., Baker, C.T.H., Bocharov, G.A. Rival approaches to mathematical modelling in immunology, J. Comput. Appl. Math., 205 (2007) 669–686.

    Google Scholar 

  4. Luzyanina, T., Roose, D., Bocharov, G.: Distributed parameter identification for a label-structured cell population dynamics model using CFSE histogram time-series data. J. Math. Biol. 59(5): 581–603 (2009)

    Google Scholar 

  5. Luzyanina, T., Mrusek, S., Edwards, J.T., Roose, D., Ehl, S., Bocharov, G.: Computational analysis of CFSE proliferation assay. J. Math. Biol. 54(1) 57–89 (2007)

    Google Scholar 

  6. Luzyanina, T., Roose, D., Schinkel, T., Sester, M., Ehl, S., Meyerhans, A., Bocharov, G.: Numerical modelling of label-structured cell population growth using CFSE distribution data. Theor. Biol. Math. Model. 4 1–26 (2007)

    Google Scholar 

  7. T. Luzyanina, J. Cupovic, B. Ludewig, G. Bocharov. (2014) Mathematical models for CFSE labelled lymphocyte dynamics: asymmetry and time-lag in division. Journal of Mathematical Biology. 69(6–7):1547–83

    Google Scholar 

  8. Antia, R., Ganusov, V.V., Ahmed, R., The role of models in understanding CD8+ T-cell memory, Nat. Rev. Immunol., 5 (2005) 101–111.

    Google Scholar 

  9. Goldstein, B., Faeder, J.R., Hlavacek, W.S., Mathematical and computational models of immune-receptor signalling. Nat Rev Immunol., 4 (2004) 445–456.

    Google Scholar 

  10. Mohler, R.R., Bruni, C., Gandolfi, A., A systems approach to immunology, Proc. IEEE, 68 (1980) 964–990.

    Google Scholar 

  11. Morel, P.A., Mathematical modeling of immunological reactions, Front Biosci., 16 (1998) d338–347.

    Google Scholar 

  12. Perelson A.S., Modelling viral and immune system dynamics, Nat Rev Immunol., 2 (2002) 28–36.

    Google Scholar 

  13. Perelson, A.S., Ribeiro, R.M., Hepatitis B virus kinetics and mathematical modeling, Semin Liver Dis., 24 (2004) Suppl 1, 11–16.

    Google Scholar 

  14. Perelson, A.S., Nelson, P.W., Mathematical analysis of HIV-1 dynamics in vivo, SIAM Review, 41 (1999) 3–44.

    Google Scholar 

  15. Petrovsky, N., Brusic, V., Computational immunology: The coming of age, Immunol. Cell Biol., 80 (2002) 248–254.

    Google Scholar 

  16. Ribeiro, R.M., Lo, A., Perelson, A.S., Dynamics of hepatitis B virus infection, Microbes Infect., 4 (2002) 829–835.

    Google Scholar 

  17. Wodarz, D., Mathematical models of HIV and the immune system, Novartis Found Symp., 254 (2003) 193–207.

    Google Scholar 

  18. Yates, A., Chan, C.C., Callard, R.E., George, A.J., Stark, J., An approach to modelling in immunology, Brief Bioinform., 2 (2001) 245–257.

    Google Scholar 

  19. Asquith B, Borghans JA, Ganusov VV, Macallan DC. Lymphocyte kinetics in health and disease. Trends Immunol. (2009); 30(4):182–9.

    Google Scholar 

  20. Germain RN, Meier-Schellersheim M, Nita-Lazar A, Fraser ID. Systems biology in immunology: a computational modeling perspective. Annu Rev Immunol. (2011); 29:527–85. Review.

    Google Scholar 

  21. Kirschner DE, Linderman JJ. Mathematical and computational approaches can complement experimental studies of host-pathogen interactions. Cell Microbiol. (2009); 11(4):531–9.

    Google Scholar 

  22. Klauschen F, Angermann BR, Meier-Schellersheim M. Understanding diseases by mouse click: the promise and potential of computational approaches in Systems Biology. Clin Exp Immunol. (2007); 149(3):424–9.

    Google Scholar 

  23. Wodarz D. Ecological and evolutionary principles in immunology. Ecol Lett. (2006); 9(6):694–705.

    Google Scholar 

  24. Yan Q. Immunoinformatics and systems biology methods for personalized medicine. Methods Mol Biol. (2010); 662:203–20.

    Google Scholar 

  25. van den Berg HA, Rand DA. Quantitative theories of T-cell responsiveness. Immunol Rev. (2007); 216:81–92.

    Google Scholar 

  26. Mirsky HP, Miller MJ, Linderman JJ, Kirschner DE. Systems biology approaches for understanding cellular mechanisms of immunity in lymph nodes during infection. J Theor Biol. (2011); 287:160–70.

    Google Scholar 

  27. Narang V, Decraene J, Wong SY, Aiswarya BS, Wasem AR, Leong SR, Gouaillard A. Systems immunology: a survey of modeling formalisms, applications and simulation tools. Immunol Res. (2012); 53(1–3):251–65.

    Google Scholar 

  28. Ganusov VV, Pilyugin SS, de Boer RJ, Murali-Krishna K, Ahmed R, Antia R. Quantifying cell turnover using CFSE data. J Immunol Methods. 2005; 298(1-2):183-200. Erratum in: J Immunol Methods. (2006); 317(1–2):186–7.

    Google Scholar 

  29. De Boer RJ, Ganusov VV, Milutinovi D, Hodgkin PD, Perelson AS. Estimating lymphocyte division and death rates from CFSE data. Bull Math Biol. (2006); 68(5):1011–31.

    Google Scholar 

  30. Hawkins ED, Hommel M, Turner ML, Battye FL, Markham JF, Hodgkin PD. Measuring lymphocyte proliferation, survival and differentiation using CFSE time-series data. Nat Protoc. (2007); 2(9):2057–67.

    Google Scholar 

  31. Len K, Faro J, Carneiro J. A general mathematical framework to model generation structure in a population of asynchronously dividing cells. J Theor Biol. (2004); 229(4):455–76.

    Google Scholar 

  32. Asquith B, Debacq C, Florins A, Gillet N, Sanchez-Alcaraz T, Mosley A, Willems L. Quantifying lymphocyte kinetics in vivo using carboxyfluorescein diacetate succinimidyl ester (CFSE). Proc Biol Sci. (2006); 273(1590):1165–71.

    Google Scholar 

  33. Yates A, Chan C, Strid J, Moon S, Callard R, George AJ, Stark J. Reconstruction of cell population dynamics using CFSE. BMC Bioinformatics. (2007); 8:196.

    Google Scholar 

  34. Perelson AS, Ribeiro RM. Modeling the within-host dynamics of HIV infection. BMC Biol. (2013); 11:96.

    Google Scholar 

  35. Canini L, Perelson AS. Viral kinetic modeling: state of the art. J Pharmacokinet Pharmacodyn. (2014); 41(5):431–43.

    Google Scholar 

  36. Eftimie R, Gillard JJ, Cantrell DA. Mathematical Models for Immunology: Current State of the Art and Future Research Directions. Bull Math Biol. (2016); 78(10):2091–2134.

    Google Scholar 

  37. Ganusov VV. Strong Inference in Mathematical Modeling: A Method for Robust Science in the Twenty-First Century. Front Microbiol. (2016); 7:1131

    Google Scholar 

  38. Castro M, Lythe G, Molina-Pars C, Ribeiro RM. Mathematics in modern immunology. Interface Focus. (2016); 6(2):20150093

    Google Scholar 

  39. Deem MW, Hejazi P. Theoretical aspects of immunity. Annu Rev Chem Biomol Eng. (2010); 1:247-76.

    Google Scholar 

  40. Rapin N, Lund O, Bernaschi M, Castiglione F. Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS One. (2010); 5(4):e9862.

    Google Scholar 

  41. Belfiore M, Pennisi M, Aric G, Ronsisvalle S, Pappalardo F. In silico modeling of the immune system: cellular and molecular scale approaches. Biomed Res Int. (2014); 2014:371809.

    Google Scholar 

  42. Thakar J, Poss M, Albert R, Long GH, Zhang R. Dynamic models of immune responses: what is the ideal level of detail? Theor Biol Med Model. (2010); 7:35.

    Google Scholar 

  43. Lundegaard C, Lund O, Kesmir C, Brunak S, Nielsen M. Modeling the adaptive immune system: predictions and simulations. Bioinformatics. (2007); 23(24):3265–75.

    Google Scholar 

  44. Arazi A, Pendergraft WF 3rd, Ribeiro RM, Perelson AS, Hacohen N. Human systems immunology: hypothesis-based modeling and unbiased data-driven approaches. Semin Immunol. (2013); 25(3):193–200.

    Google Scholar 

  45. Kidd BA, Peters LA, Schadt EE, Dudley JT. Unifying immunology with informatics and multiscale biology. Nat Immunol. (2014); 15(2):118–27

    Google Scholar 

  46. Proserpio V, Mahata B. Single-cell technologies to study the immune system. Immunology. (2016); 147(2):133–40.

    Google Scholar 

  47. Tang J, van Panhuys N, Kastenmller W, Germain RN. The future of immunoimaging–deeper, bigger, more precise, and definitively more colorful. Eur J Immunol. (2013); 43(6):1407–12.

    Google Scholar 

  48. Bocharov G, Argilaguet J, Meyerhans A. Understanding Experimental LCMV Infection of Mice: The Role of Mathematical Models. J Immunol Res. (2015); 2015:739706.

    Google Scholar 

  49. Stephen P. Ellner, John Guckenheimer. Dynamic Models in Biology. Princeton University Press. (2006). 330 pp. ISBN: 9780691125893.

    Google Scholar 

  50. Bell G, Perelson AS, Pimbley G (eds): Theoretical Immunology. New York, Marcer Dekker, (1978). 646 pp.

    Google Scholar 

  51. Polderman, J.W., Willems, J.C., Introduction to Mathematical Systems Theory. A behavioral approach, Texts in Applied Mathematics, 26, Springer-Verlag, New York, 1998.

    Google Scholar 

  52. Chakraborty, A.K., Dustin, M.L., Shaw, A.S. In silico models for cellular and molecular immunology: successes, promises and challenges, Nature Immunology, 4 (2003) 933–936.

    Google Scholar 

  53. Baker, C.T.H., Bocharov, G.A., Paul, C.A.H., Rihan, F.A., Modelling and analysis of time-lags in some basic patterns of cell proliferation, J. Math. Biol., 37 (1998) 341–371.

    Google Scholar 

  54. Armitage, P., Berry G., Matthews, J.N.S., Statistical Methods in Medical Research. (Fourth Edition) Blackwell Science, Oxford (2001).

    Google Scholar 

  55. Gershenfeld, N.A., The Nature of Mathematical Modelling, Cambridge University Press, Cambridge, (2000).

    Google Scholar 

  56. Bard, Y., Nonlinear Parameter Estimation (Academic Press, 1974).

    Google Scholar 

  57. Myung, I.J. Tutorial on maximum likelihood estimation. J. Mathematical Physiology, 47 (2003) 90–100.

    Google Scholar 

  58. Pascual, M.A., Kareiva, P. Predicting the outcome of competition using experimental data: maximum likelihood and Bayesian approaches. Ecology, 77 (1996) 337–349.

    Google Scholar 

  59. Gingerich, P.D. Arithmetic or geometric normality of biological variation: an empirical test of theory. J. Theor. Biology204 (2000) 201–221.

    Google Scholar 

  60. Venzon, D.J., Moolgavkar, S.H.: A method for computing profile-likelihood-based confidence intervals. Appl. Statist. 37(1) 87–94 (1988)

    Google Scholar 

  61. B. Efron and R. Tibshirani. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci., 1(1):54–77, (1986).

    Google Scholar 

  62. B. Efron and R. Tibshirani. Introduction to the bootstrap. Chapman and Hall, New York, (1993).

    Google Scholar 

  63. Rubinov S.I. Cell kinetics. In: Mathematical models in molecular and cellular biology Segel L.A. (Ed) Cambridge University Press, Cambridge (1980), pp 502–522.

    Google Scholar 

  64. Pilyugin S.S., Ganusov V.V., Murali-Krishna K., Ahmed R. and Antia R. The rescaling method for quantifying the turnover of cell populations. J. Theor. Biol. (2003) 225: 275–283.

    Google Scholar 

  65. Ganusov V.V., Pilyugin S.S., de Boer R.J., Murali-Krishna K., Ahmed R. and Antia R. Quantifying cell turnover using CFSE data. J. Immunol. Methods. (2005) 298: 183–200.

    Google Scholar 

  66. De Boer R.J. and Perelson A.S. Estimating division and death rates from CFSE data. J. Comput. Appl. Math. (2005) 184: 140–164.

    Google Scholar 

  67. Hadamard, J.: Le probléme de Cauchy et les équations aux dérivées partielles linéaires hyperboliques. Paris, Hermann (1932)

    Google Scholar 

  68. Tikhonov, A.N., Arsenin, V.Y.: Solutions of ill-posed problems. Washington, V. H. Winston & Sons (1977)

    Google Scholar 

  69. Hasanov, A., DuChateau, P., Pektas, B.: An adjoint problem approach and coarse-fine mesh method for identification of the diffusion coefficient in a linear parabolic equation. J. Inv. Ill-Posed Problems 14(5) 435–463 (2006)

    Google Scholar 

  70. Bitterlich, S., Knabner, P.: An efficient method for solving an inverse problem for the Richards equation. J. Comput. Appl. Math. 147 153–173 (2002)

    Google Scholar 

  71. Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization method. Sov. Math. Dokl. 4 1035–1038 (1963)

    Google Scholar 

  72. Engl, H.W., Rundell, W., Scherzer, O.: A regularization scheme for an inverse problem in age-structured populations. J. Math. Anal. Appl. 182 658–679 (1994)

    Google Scholar 

  73. Grebennikov, A.: Local regularization algorithms of solving coefficient inverse problems for some differential equations. Inverse Probl. Eng. 11(3) 201–213 (2003)

    Google Scholar 

  74. Navon, I.M.: Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography. Dynam. Atmos. Oceans 27(1) 55–79 (1997)

    Google Scholar 

  75. DuChateau, P., Thelwell, R., Butters, G.: Analysis of an adjoint problem approach to the identification of an unknown diffusion coefficient. Inverse Problems 20 601–625 (2004)

    Google Scholar 

  76. Tautenhahn, U., Jin, Q.: Tikhonov regularization and a posteriori rules for solving nonlinear ill posed problems. Inverse Problems 19 1–21 (2003)

    Google Scholar 

  77. Perthame, B., Zubelli, J.P.: On the inverse problem for a size-structured population model. Inverse Problems 23 1037–1052 (2007)

    Google Scholar 

  78. Miao, H., Jin, X., Perelson, A.S., Wu, H.: Evaluation of multitype mathematical models for CFSE-labeling experiment data. Bull. Math. Biol. 74(2) 300–326 (2012)

    Google Scholar 

  79. Banks, H.T., Thompson, W.C.: Mathematical models of dividing cell populations: Application to CFSE data. Math. Model. Nat. Phenom. 7(5) 24–52 (2012)

    Google Scholar 

  80. De Boer RJ, Perelson AS. Quantifying T lymphocyte turnover. J Theor Biol. (2013) 21;327:45–87.

    Google Scholar 

  81. Hross S, Hasenauer J. Analysis of CFSE time-series data using division-, age- and label-structured population models. Bioinformatics. (2016); 32(15):2321–9

    Google Scholar 

  82. Ackleh, A.S., Banks, H.T., Deng, K., Hu, S.: Parameter estimation in a coupled system of nonlinear size-structured populations. Math. Biosci. Engin. 2(2) 289–315 (2005)

    Google Scholar 

  83. Morozov, V.A.: On the solution of functional equations by the method of regularization. Sov. Math. Dokl. 7 414–417 (1966)

    Google Scholar 

  84. Morozov, V.A.: Methods for solving incorrectly posed problems. New York, Springer-Verlag (1984)

    Google Scholar 

  85. Schittler, D., Hasenauer, J., Allgöwer, F.: A generalized model for cell proliferation: Integrating division numbers and label dynamics. Proc. Eight International Workshop on Computational Systems Biology (WCSB 2011), Zurich, Switzerland, 165–168 (2011)

    Google Scholar 

  86. Hasenauer, J., Schittler, D., Allgöwer, F.: A computational model for proliferation dynamics of division- and label-structured populations. arXiv:1202.4923v1 [q-bio.PE] (2012)

  87. Hasenauer, J., Schittler, D., Allgöwer, F.: Analysis and simulation of division- and label-structured population models: a new tool to analyze proliferation assays. Bull. Math. Biol. 74(11) 2692–2732 (2012)

    Google Scholar 

  88. Sabrina Hross, Jan Hasenauer; Analysis of CFSE time-series data using division-, age- and label-structured population models, Bioinformatics, Volume 32, Issue 15, 1 August 2016, Pages 23212329, https://doi.org/10.1093/bioinformatics/btw131

    Google Scholar 

  89. Banks, H.T., Thompson, W.C., Peligero, C., Giest, S., Argilaguet, J., Meyerhans, A.: A division-dependent compartmental model for computing cell numbers in CFSE-based lymphocyte proliferation assay. CRSC-TR12-03, North Carolina State University (2012)

    Google Scholar 

  90. De Boer, R.J., Perelson, A.S.: Estimating division and death rates from CFSE data. J Comput. Appl. Math. 184 140–164 (2005)

    Google Scholar 

  91. Roederer, M.: Interpretation of cellular proliferation data: avoid the panglossian. Cytometry A 79(2) 95–101 (2011)

    Google Scholar 

  92. Chang, J.T., Palanivel, V.R., Kinjyo, I., Schambach, F., Intlekofer, A.M., Banerjee, A., Longworth, S.A., Vinup, K.E., Mrass, P., Oliaro, J., Killeen, N., Orange, J.S., Russell, S.M., Weninger, W., Reiner, S.L.: Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315 (5819) 1687–1691 (2007)

    Google Scholar 

  93. Banks, H.T., Choi, A., Huffman, T., Nardini, J., Poag, L., Thompson, W.C.: Quantifying CFSE label decay in flow cytometry data. Appl. Math. Lett. 26(5) 571–577 (2013)

    Google Scholar 

  94. Banks, H.T., Sutton, K.L., Thompson, W.C., Bocharov, G., Roose, D., Schenkel, T., Meyerhans, A.: Estimation of cell proliferation dynamics using CFSE data. Bull. Math. Biol. 70 116–150 (2011)

    Google Scholar 

  95. Banks, H.T., Sutton, K.L., Thompson, W.C., Bocharov, G., Doumic, M., Schenkel, T., Argilaguet, J., Giest, S., Peligero, C., Meyerhans, A.: A new model for the estimation of cell proliferation dynamics using CFSE data. J. Immunol. Methods 373 143–160 (2011)

    Google Scholar 

  96. Schwarz, G. Estimating the dimension of a model. The Annals of Statistics, 6 (1978) 461–464.

    Google Scholar 

  97. Garny A, Noble D, Kohl P. Dimensionality in cardiac modelling. Prog Biophys Mol Biol. (2005); 87(1):47–66.

    Google Scholar 

  98. Burnham, K.P., Anderson, D.R., Model selection and inference - a practical information-theoretic approach (Springer, New York, 1998).

    Google Scholar 

  99. Kullback, S., Leibler, R.A. On information and sufficiency. Ann. Math. Stat., 22 (1951) 79–86.

    Google Scholar 

  100. Akaike H., A new look at the statistical model identification, IEEE Transactions on Automatic control, 19 (1974) 716–723.

    Google Scholar 

  101. Borghans, J.A., Taams, L.S., Wauben, M.H.M., De Boer, R.J., Competition for antigenic sites during T cell proliferation: a mathematical interpretation of in vitro data, Proc. Natl. Acad. Sci. USA., 96 (1999) 10782–10787.

    Google Scholar 

  102. Zinkernagel RM: Lymphocytic choriomeningitis virus and immunology. Curr Top Microbiol Immunol (2002), 263:1–5.

    Google Scholar 

  103. Burnet, F.M. The Clonal Selection Theory of Acquired Immunity (Cambridge University Press, 1959).

    Google Scholar 

  104. Ehl, S., Klenerman, P., Zinkernagel, R.M., Bocharov, G. The impact of variation in the number of CD8\(^+\) T-cell precursors on the outcome of virus infection. Cellular Immunology, 189 (1998) 67–73.

    Google Scholar 

  105. Altman, J.D., Moss, P.A.H., Goulder, P.J.R., Barouch, D.H., McHeyzer-Williams, M.G., Bell, J.I., McMichael, A.J., Davis, M.M. Phenotypic analysis of antigen-specific T lymphocytes Science, 274 (1996) 94–96.

    Google Scholar 

  106. Battegay, M., Cooper, S., Althage,A., Banziger, H., Hengartner, H., Zinkernagel, R.M. Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates J. Virol. Methods, 33 (1991) 191–198.

    Google Scholar 

  107. Paul, C.A.H., A User Guide to Archi, MCCM Rep. 283, University of Manchester. http://www.maths.man.ac.uk/~chris/reports/rep283.pdf

  108. Paul, C.A.H., Archifortran listing. http://www.maths.man.ac.uk/~chris/software/ University of Manchester.

  109. Numerical Algorithms Group The NAg fortran Library http://www.nag.co.uk/numeric/Fortran_Libraries.asp.

  110. De Boer, R.J., Oprea, M., Antia, R., Murali-Krishna, K., Ahmed, R., Perelson, A.S. Recruitment times, proliferation, and apoptosis rates during the CD8\(^{+}\) T-cell response to lymphocytic choriomeningitis virus. J. Virology, 75 (2001) 10663–10669.

    Google Scholar 

  111. Bocharov G, Züst R, Cervantes-Barragan L, Luzyanina T, Chiglintsev E, Chereshnev VA, Thiel V, Ludewig B. A systems immunology approach to plasmacytoid dendritic cell function in cytopathic virus infections. PLoS Pathog. (2010); 6(7):e1001017.

    Google Scholar 

  112. Pitt, M.A., Myung, I.J. When a good fit can be bad. Trends Cogn Sci. 2002, 6(10): 421–425.

    Google Scholar 

  113. Grünwald, P.D., Myung, J.I., Pitt N.A. (Editors) Advances in Minimum Description Length: Theory and Applications (MIT Press, 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady Bocharov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bocharov, G., Volpert, V., Ludewig, B., Meyerhans, A. (2018). Parameter Estimation and Model Selection. In: Mathematical Immunology of Virus Infections. Springer, Cham. https://doi.org/10.1007/978-3-319-72317-4_3

Download citation

Publish with us

Policies and ethics