Advertisement

Basic Principles of Building a Mathematical Model of Immune Response

  • Gennady BocharovEmail author
  • Vitaly Volpert
  • Burkhard Ludewig
  • Andreas Meyerhans
Chapter

Abstract

This chapter introduces a modular approach to the formulation of mathematical models of immune responses to virus infections. It presents a methodological basis for mathematical immunology of virus infections.

References

  1. 1.
    Bocharov, G. (2005) Understanding complex regulatory systems: integrating molecular biology and systems analysis Transfusion Medicine and Hemotherapy 32(6): 304–321.Google Scholar
  2. 2.
    Ludewig B, Stein JV, Sharpe J, Cervantes-Barragan L, Thiel V, Bocharov G. A global “imaging” view on systems approaches in immunology. Eur. J. Immunol. (2012); 42(12):3116–25.Google Scholar
  3. 3.
    Mohler, R.R., Bruni, C., Gandolfi, A., A systems approach to immunology, Proc. IEEE, (1980) 68: 964–990.Google Scholar
  4. 4.
    von Bertalanffy, K.L., General System Theory: Foundations, Development, Applications (1968). New York: George Braziller.Google Scholar
  5. 5.
    Mesarovic, M.D., General systems theory and biology view of a theoretician. In: Mesarovic?, D.M. (Ed.), General Systems Theory and Biology. Springer (1968).Google Scholar
  6. 6.
    Kitano, H., Systems biology: A brief overview. Science, 295 (2002) 1662–1664.Google Scholar
  7. 7.
    Kitano, H., Computational systems biology, Nature, 420 (2002) 206–210.Google Scholar
  8. 8.
    Csete, M.E., Doyle, J.C., Rerverse engeneering of biological complexity, Science, 295 (2002) 1664–1669.Google Scholar
  9. 9.
    Levchenko, A., Bruck, J., Sternberg, P.W., Regulatory modules that generate biphasic signal response in biological systems, Syst. Biol., 1 (2004) 139–148.Google Scholar
  10. 10.
    Kitano, H., Cancer as a robust system: implications for anticancer therapy, Nature Reviews Cancer, 4 (2004) 227–235.Google Scholar
  11. 11.
    Wiener, N. Cybernetics: Or Control and Communication in the Animal and the Machine. (1948), Paris, (Hermann and Cie) and Camb. Mass. (MIT Press).Google Scholar
  12. 12.
    Ashby, W.R. (1956). An Introduction to Cybernetics, Chapman and Hall.Google Scholar
  13. 13.
    Noble, D. The music of life: Biology beyond the genome. (2006), Oxford: Oxford University Press.Google Scholar
  14. 14.
    Kalman, R.E., New developments in systems theory relevant to biology. In: Systems Theory and Biology, Springer-Verlag, Berlin (1968), Mesarović, M.D. (Editor), 222–232.Google Scholar
  15. 15.
    Bell G, Perelson AS, Pimbley G (eds): Theoretical Immunology. New York, Marcer Dekker (1978). 646 pp.Google Scholar
  16. 16.
    Constant F.W. Fundamental laws of physics (1963). Addison-Wesley, Reading, Massachusetts.Google Scholar
  17. 17.
    Burnet, F.M. The clonal selection theory of acquired immunity. Aust. J. Sci.20, 6769 (1957).Google Scholar
  18. 18.
    Jerne N. The immune system. Scientific American (1973); 229:5260.Google Scholar
  19. 19.
    Zinkernagel, R.M., Immunology and immunity against infection: General rules, J. Comput. Appl. Math., 184 (2005) 4–9.Google Scholar
  20. 20.
    Grossman, Z., What did mathematical models contribute to AIDS research? (Review of [41]) Trends in Ecology & Evolution, 16 (2001) 468–469.Google Scholar
  21. 21.
    Grossman, Z., Mathematical modeling of thymopoiesis in HIV infection: real data, virtual data, and data interpretation Clin Immunol., 107 (2003) 137–139.Google Scholar
  22. 22.
    Grossman, Z. and Paul, W.E., Autoreactivity, dynamic tuning and selectivity, Curr. Opin. Immunol., 13 (2001) 687–698.Google Scholar
  23. 23.
    Grossman, Z., Min, B., Meier-Schellersheim, M., Paul, W.E., Concomitant regulation of T-cell activation and homeostasis. Nature Rev. Immunol., 4 (2004) 387–395.Google Scholar
  24. 24.
    Polderman, J.W., Willems, J.C., Introduction to Mathematical Systems Theory. A behavioral approach, Texts in Applied Mathematics, 26, Springer-Verlag, New York, (1998).Google Scholar
  25. 25.
    Weyl, Hermann. The Classical Groups: Their Invariants and Representations. Princeton University Press, (2016), 336 p.Google Scholar
  26. 26.
    Gershenfeld, N.A. (2000) The Nature of Mathematical Modelling, Cambridge University Press, Cambridge.Google Scholar
  27. 27.
    Andrew, S.M., Baker, C.T.H., Bocharov, G.A. Rival approaches to mathematical modelling in immunology, J. Comput. Appl. Math., 205 (2007) 669–686.Google Scholar
  28. 28.
    Marchuk GI. Mathematical Models in Immunology. New York, Optimization Software, Inc., (1983), 378 p.Google Scholar
  29. 29.
    Marchuk, G.I., Mathematical models of immune response in infectious diseases, transl. from Russian by G. Kontarev & I. Sidorov, Kluwer Press, Dordrecht (1997).Google Scholar
  30. 30.
    Merril, S.J., Computational models in immunological methods: an historical review, Journal of Immunological Methods, 216 (1998) 69–92.Google Scholar
  31. 31.
    Nowak, M.A., May, R.M. Virus Dynamics. Mathematical Principles of Immunology and Virology, Oxford University Press, Oxford (2000).Google Scholar
  32. 32.
    Heidelberger, M., Kendall, F.E., The precipitin reaction between type iii pneumococcus polysaccharide and homologous antibody: III. a quantitative study and a theory of the reaction mechanism J. Exp. Med., 61 (1935) 563–591.Google Scholar
  33. 33.
    Banks, R.B. (1994) Growth and Diffusion Phenomena. Mathematical Frameworks and Applications, Springer-Verlag, Berlin.Google Scholar
  34. 34.
    Bocharov, G., Klenerman, P., Ehl, S., Modelling the Dynamics of LCMV Infection in Mice: II. Compartmental Structure and Immunopathology. J. Theor. Biol., 221 (2003) 349–378.Google Scholar
  35. 35.
    Nisbet, R.M., Gurney, W.S.C., Modelling Fluctuating Populations, Wiley, Chichester (1982).Google Scholar
  36. 36.
    Baker, C.T.H., Bocharov, G.A., Paul, C.A.H., Rihan, F.A., Modelling and analysis of time-lags in some basic patterns of cell proliferation, J. Math. Biol., 37 (1998) 341–371.Google Scholar
  37. 37.
    Bocharov, G.A., Hadeler, K.P., Structured population models, conservation laws, and delay equations, J. Differ. Equ., 168 (2000), 212–237.Google Scholar
  38. 38.
    De Boer, R.J., Perelson, A.S., Towards a general function describing T cell proliferation, J. theor. Biol., 175 (1995) 567–576.Google Scholar
  39. 39.
    Borghans, J.A., Taams, L.S., Wauben, M.H.M., De Boer, R.J., Competition for antigenic sites during T cell proliferation: A mathematical interpretation of in vitro data, Proc. Natl. Acad. Sci. USA., 96 (1999) 10782–10787.Google Scholar
  40. 40.
    Bocharov G, Zust R, Cervantes-Barragan L, Luzyanina T, Chiglintsev E, Chereshnev VA, Thiel V, Ludewig B. A systems immunology approach to plasmacytoid dendritic cell function in cytopathic virus infections. PLoS Pathog. (2010); 6(7):e1001017.Google Scholar
  41. 41.
    Bocharov, G.A., Modelling the Dynamics of LCMV Infection in Mice: Conventional and Exhaustive CTL Responses, J. Theor. Biol., 192 (1998) 283–308.Google Scholar
  42. 42.
    Bocharov G, Quiel J, Luzyanina T, Alon H, Chiglintsev E, Chereshnev V, Meier-Schellersheim M, Paul W, Grossman Z. (2011) Feedback regulation of proliferation versus differentiation explains the dependence of antigen-stimulated CD4 T-cell expansion on precursor number. Proc. Natl. Acad. Sci. USA 108(8):3318–23.Google Scholar
  43. 43.
    Hassell M.P., The Spatial and Temporal Dynamics of Host-Parasitoid Interactions, Oxford University Press, Oxford (2000).Google Scholar
  44. 44.
    McLean, A.R., Rosado, M.M., Agenes, F., Vascocellos, R., Freitas, A.A., Resource competition as a mechanism for B cell homeostasis, Proc. Natl. Acad. Sci. USA., 94 (1997) 5792–5797.Google Scholar
  45. 45.
    Antia, R., Pilyugin, S.S., Ahmed, R., Models of immune memory: On the role of cross-reactive stimulation, competition and homeostasis in maintaining immune memory, Proc. Natl. Acad. Sci. USA, 95 (1998) 14926–14931.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gennady Bocharov
    • 1
    Email author
  • Vitaly Volpert
    • 2
    • 3
  • Burkhard Ludewig
    • 4
  • Andreas Meyerhans
    • 5
  1. 1.Marchuk Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Institut Camille Jordan, UMR 5208 CNRSCentre National de la Recherche Scientifique (CNRS)VilleurbanneFrance
  3. 3.RUDN UniversityMoscowRussia
  4. 4.Institute of ImmunobiologyKantonsspital St. GallenSt. GallenSwitzerland
  5. 5.Parc de Recerca Biomedica BarcelonaICREA and Universitat Pompeu FabraBarcelonaSpain

Personalised recommendations