Advertisement

Spectral Triples on ON

  • Magnus Goffeng
  • Bram Mesland
Chapter
Part of the MATRIX Book Series book series (MXBS, volume 1)

Abstract

We give a construction of an odd spectral triple on the Cuntz algebra O N , whose K-homology class generates the odd K-homology group K1(O N ). Using a metric measure space structure on the Cuntz-Renault groupoid, we introduce a singular integral operator which is the formal analogue of the logarithm of the Laplacian on a Riemannian manifold. Assembling this operator with the infinitesimal generator of the gauge action on O N yields a θ-summable spectral triple whose phase is finitely summable. The relation to previous constructions of Fredholm modules and spectral triples on O N is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank the MATRIX for the program Refining C-algebraic invariants for dynamics using KK-theory in Creswick, Australia (2016) where this work came into being. We are grateful to the support from Leibniz University Hannover where this work was initiated. We also thank Francesca Arici, Robin Deeley, Adam Rennie and Alexander Usachev for fruitful discussions and helpful comments, and the anonymous referee for a careful reading of the manuscript. The first author was supported by the Swedish Research Council Grant 2015-00137 and Marie Sklodowska Curie Actions, Cofund, Project INCA 600398.

References

  1. 1.
    Connes, A.: Compact metric spaces, Fredholm modules and hyperfiniteness. Ergodic Theory Dyn. Syst. 9, 207–230 (1989)zbMATHGoogle Scholar
  2. 2.
    Connes, A.: Noncommutative Geometry. Academic Press, London (1994)zbMATHGoogle Scholar
  3. 3.
    Connes, A., Moscovici, H.: Type III and spectral triples. In: Traces in Number Theory, Geometry and Quantum Fields. Aspects of Mathematics, vol. E38, pp. 57–71. Friedrich Vieweg, Wiesbaden (2008)Google Scholar
  4. 4.
    Coornaert, M.: Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov. Pac. J. Math. 159(2), 241–270 (1993)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cornelissen, G., Marcolli, M., Reihani, K., Vdovina, A.: Noncommutative geometry on trees and buildings. In: Traces in Geometry, Number Theory, and Quantum Fields, pp. 73–98. Vieweg, Wiesbaden (2007)Google Scholar
  6. 6.
    Cuntz, J.: Simple C -algebras generated by isometries. Commun. Math. Phys. 57(2), 173–185 (1977)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Emerson, H., Nica, B.: K-homological finiteness and hyperbolic groups. J. Reine Angew. Math. (to appear).  https://doi.org/10.1515/crelle-2015-0115
  8. 8.
    Evans, D.E.: On O n. Publ. Res. Inst. Math. Sci. 16(3), 915–927 (1980)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Farsi, C., Gillaspy, E., Julien, A., Kang, S., Packer, J.: Wavelets and spectral triples for fractal representations of Cuntz algebras. arXiv:1603.06979Google Scholar
  10. 10.
    Fröhlich, J., Grandjean, O., Recknagel, A.: Supersymmetric quantum theory and differential geometry. Commun. Math. Phys. 193(3), 527–594 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Goffeng, M.: Equivariant extensions of ∗-algebras. N. Y. J. Math. 16, 369–385 (2010)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Goffeng, M., Mesland, B.: Spectral triples and finite summability on Cuntz-Krieger algebras. Doc. Math. 20, 89–170 (2015)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Goffeng, M., Mesland, B., Rennie, A.: Shift tail equivalence and an unbounded representative of the Cuntz-Pimsner extension. Ergodic Theory Dyn. Syst. (to appear).  https://doi.org/10.1017/etds.2016.75
  14. 14.
    Kaminker, J., Putnam, I.: K-theoretic duality of shifts of finite type. Commun. Math. Phys. 187(3), 509–522 (1997)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kasparov, G.G.: The operator K-functor and extensions of C -algebras. Izv. Akad. Nauk SSSR Ser. Mat. 44(3), 571–636, 719 (1980)Google Scholar
  16. 16.
    Laca, M., Neshveyev, S.: KMS states of quasi-free dynamics on Pimsner algebras. J. Funct. Anal. 211, 457–482 (2004)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lord, S., Sukochev, F., Zanin, D.: Singular Traces. Theory and Applications. De Gruyter Studies in Mathematics, vol. 46. De Gruyter, Berlin (2013)Google Scholar
  18. 18.
    Olesen, D., Pedersen, G.K.: Some C -dynamical systems with a single KMS state. Math. Scand. 42, 111–118 (1978)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pask, D., Rennie, A.: The noncommutative geometry of graph C -algebras. I. The index theorem. J. Funct. Anal. 233(1), 92–134 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Renault, J.: A Groupoid Approach to C -Algebras. Lecture Notes in Mathematics, vol. 793. Springer, Berlin (1980)CrossRefGoogle Scholar
  21. 21.
    Renault, J.: Cuntz-like algebras. In: Operator Theoretical Methods (Timisoara, 1998), pp. 371–386. Theta Foundation, Bucharest (2000)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesChalmers University of Technology and the University of GothenburgGothenburgSweden
  2. 2.Institut für AnalysisLeibniz Universität HannoverHannoverGermany

Personalised recommendations