Endomorphisms of Lie Groups over Local Fields

  • Helge GlöcknerEmail author
Part of the MATRIX Book Series book series (MXBS, volume 1)


Lie groups over totally disconnected local fields furnish prime examples of totally disconnected, locally compact groups. We discuss the scale, tidy subgroups and further subgroups (like contraction subgroups) for analytic endomorphisms of such groups.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author is grateful for the support provided by the University of Melbourne (Matrix Center, Creswick) and the University of Newcastle (NSW), notably George A. Willis, which enabled participation in the ‘Winter of Disconnectedness.’ A former unpublished manuscript concerning the scale of automorphisms dating back to 2006 was supported by DFG grant 447 AUS-113/22/0-1 and ARC grant LX 0349209.


  1. 1.
    Baumgartner, U., Willis, G.A.: Contraction groups and scales of automorphisms of totally disconnected locally compact groups. Isr. J. Math. 142, 221–248 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bertram, W., Glöckner, H., Neeb, K.-H.: Differential calculus over general base fields and rings. Expo. Math. 22, 213–282 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bhattacharjee, M., MacPherson, D.: Strange permutation representations of free groups. J. Aust. Math. Soc. 74, 267–285 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Borel, A.: Linear Algebraic Groups. Springer, New York (1991)Google Scholar
  5. 5.
    Bourbaki, N.: Variétés différentielles et analytiques. Fascicule de résultats. Hermann, Paris (1967)Google Scholar
  6. 6.
    Bourbaki, N.: Topological Vector Spaces, chaps. 1–5. Springer, Berlin (1987)CrossRefGoogle Scholar
  7. 7.
    Bourbaki, N.: Lie Groups and Lie Algebras, chaps. 1–3. Springer, Berlin (1989)Google Scholar
  8. 8.
    Bruhat, F., Tits, J.: Groupes reductifs sur un corps local. Publ. Math. Inst. Hautes Étud. Sci. 41, 5–251 (1972)CrossRefGoogle Scholar
  9. 9.
    Bywaters, T.P., Glöckner, H., Tornier, S., Contraction groups and passage to subgroups and quotients for endomorphisms of totally disconnected locally compact groups. Israel J. Math. (cf. arXiv:1612.06958) (to appear)Google Scholar
  10. 10.
    Dani, S.G., Shah, R.: Contraction subgroups and semistable measures on p-adic Lie groups. Math. Proc. Camb. Philos. Soc. 110, 299–306 (1991)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dani, S.G., Shah, N.A., Willis, G.A.: Locally compact groups with dense orbits under \({\mathbb Z}^d\)-actions by automorphisms. Ergodic Theory Dyn. Syst. 26, 1443–1465 (2006)Google Scholar
  12. 12.
    Dixon, J.D., du Sautoy, M.P.F., Mann, A., Segal, D.: Analytic Pro-p Groups. Cambridge University Press, Cambridge (1999)Google Scholar
  13. 13.
    du Sautoy, M., Mann, A., Segal, D.: New Horizons in Pro-p Groups. Birkhäuser, Boston (2000)Google Scholar
  14. 14.
    Giordano Bruno, A., Virili, S.: Topological entropy in totally disconnected locally compact groups. Ergod. Theory Dyn. Syst. 37, 2163–2186 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Glöckner, H.: Scale functions on p-adic Lie groups. Manuscripta Math. 97, 205–215 (1998)Google Scholar
  16. 16.
    Glöckner, H.: Implicit functions from topological vector spaces to Banach spaces. Isr. J. Math. 155, 205–252 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Glöckner, H.: Contractible Lie groups over local fields. Math. Z. 260, 889–904 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Glöckner, H.: Invariant manifolds for analytic dynamical systems over ultrametric fields. Expo. Math. 31, 116–150 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Glöckner, H.: Invariant manifolds for finite-dimensional non-archimedean dynamical systems. In: Glöckner, H., Escassut, A., Shamseddine, K. (eds.) Advances in Non-Archimedean Analysis, pp. 73–90. Contemporary Mathematics, vol. 665. American Mathematical Society, Providence, RI (2016)Google Scholar
  20. 20.
    Glöckner, H.: Lie groups over non-discrete topological fields. Preprint (2004). arXiv:math/0408008Google Scholar
  21. 21.
    Glöckner, H.: Lectures on Lie groups over local fields. In: Caprace, P.-E., Monod, N. (eds.) New Directions in Locally Compact Groups. London Math. Soc. Lect. Notes Series 447 (to appear)Google Scholar
  22. 22.
    Glöckner, H.: Contraction groups of analytic endomorphisms and dynamics on the big cell. University of Paderborn (2017)Google Scholar
  23. 23.
    Glöckner, H., Raja, C.R.E.: Expansive automorphisms of totally disconnected, locally compact groups. J. Group Theory 20, 589–619 (2017)Google Scholar
  24. 24.
    Glöckner, H., Willis, G.A.: Uniscalar p-adic Lie groups. Forum Math. 13, 413–421 (2001)Google Scholar
  25. 25.
    Glöckner, H., Willis, G.A.: Directions of automorphisms of Lie groups over local fields compared to the directions of Lie algebra automorphisms. Topol. Proc. 31, 481–501 (2007)Google Scholar
  26. 26.
    Glöckner, H., Willis, G.A.: Classification of the simple factors appearing in composition series of totally disconnected contraction groups. J. Reine Angew. Math. 634, 141–169 (2010)Google Scholar
  27. 27.
    Hazod, W., Siebert, E.: Stable Probability Measures on Euclidean Spaces and on Locally Compact Groups. Kluwer, Dordrecht (2001)CrossRefGoogle Scholar
  28. 28.
    Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis I. Springer, Berlin (1963)zbMATHGoogle Scholar
  29. 29.
    Hofmann, K.H., Morris, S.A.: The Structure of Compact Groups. de Gruyter, Berlin (1998)Google Scholar
  30. 30.
    Humphreys, J.E.: Linear Algebraic Groups. Springer, New York (1975)Google Scholar
  31. 31.
    Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory. Springer, Berlin (1994)Google Scholar
  32. 32.
    Irwin, M.C.: On the stable manifold theorem. Bull. Lond. Math. Soc. 2, 196–198 (1970)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Jacobson, N.: A note on automorphisms and derivations of Lie algebras. Proc. Am. Math. Soc. 6, 281–283 (1955)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Jacobson, N.: Basic Algebra II. W. H. Freeman and Company, New York (1989)Google Scholar
  35. 35.
    Jaikin-Zapirain, A., Klopsch, B.: Analytic groups over general pro-p domains. J. Lond. Math. Soc. 76, 365–383 (2007)Google Scholar
  36. 36.
    Jaworski, W.: On contraction groups of automorphisms of totally disconnected locally compact groups. Isr. J. Math. 172, 1–8 (2009)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Kepert, A., Willis, G.A.: Scale functions and tree ends. J. Aust. Math. Soc. 70, 273–292 (2001)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Lazard, M.: Groupes analytiques p-adiques. IHES Publ. Math. 26, 389–603 (1965)Google Scholar
  39. 39.
    Margulis, G.A.: Discrete Subgroups of Semisimple Lie Groups. Springer, Berlin (1991)CrossRefGoogle Scholar
  40. 40.
    Palmer, T. W.: Banach Algebras and the General Theory of ∗-Algebras, vol. 2. Cambridge University Press, Cambridge (2001)Google Scholar
  41. 41.
    Parreau, A.: Sous-groupes elliptiques de groupes linéaires sur un corps valué. J. Lie Theory 13, 271–278 (2003)Google Scholar
  42. 42.
    Raja, C.R.E.: On classes of p-adic Lie groups. New York J. Math. 5, 101–105 (1999)Google Scholar
  43. 43.
    Raja, C.R.E., Shah, R.: Some properties of distal actions on locally compact groups. Ergodic Theory Dyn. Syst., doi: 10.1017/etds.2017.58 (to appear)Google Scholar
  44. 44.
    Rathai, N.: Endomorphismen total unzusammenhängender lokal kompakter Gruppen. Bachelor’s thesis, Universität Paderborn (2016)Google Scholar
  45. 45.
    Reid, C.D.: Endomorphisms of profinite groups. Groups Geom. Dyn. 8, 553–564 (2014)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Reid, C.D.: Distal actions on coset spaces in totally disconnected, locally compact groups. Preprint (2016). arXiv:1610.06696Google Scholar
  47. 47.
    Schikhof, W.H.: Ultrametric Calculus. Cambridge University Press, Cambridge (1984)Google Scholar
  48. 48.
    Schneider, P.: p-Adic Lie Groups. Springer, Berlin (2011)Google Scholar
  49. 49.
    Serre, J.-P.: Lie Algebras and Lie Groups. Springer, Berlin (1992)CrossRefGoogle Scholar
  50. 50.
    Siebert, E.: Contractive automorphisms of locally compact groups. Math. Z. 191, 73–90 (1986)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Siebert, E.: Semistable convolution semigroups and the topology of contraction groups. In: Heyer, H. (ed.) Probability Measures on Groups IX. Lecture Notes in Mathematics, vol. 1379, pp. 325–343. Springer, Berlin (1989)CrossRefGoogle Scholar
  52. 52.
    Springer, T.A.: Linear Algebraic Groups. Birkhäuser, Boston (1998)CrossRefGoogle Scholar
  53. 53.
    Stroppel, M.: Locally Compact Groups. EMS Publishing House, Zurich (2006)CrossRefGoogle Scholar
  54. 54.
    Wang, J.S.P.: The Mautner phenomenon for p-adic Lie groups. Math. Z. 185, 403–412 (1984)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Weil, A.: Basic Number Theory. Springer, New York (1967)CrossRefGoogle Scholar
  56. 56.
    Wells, J.C.: Invariant manifolds of non-linear operators. Pac. J. Math. 62, 285–293 (1976)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Willis, G.A.: The structure of totally disconnected, locally compact groups. Math. Ann. 300, 341–363 (1994)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Willis, G.A.: Further properties of the scale function on a totally disconnected group. J. Algebra 237, 142–164 (2001)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Willis, G.A.: The nub of an automorphism of a totally disconnected, locally compact group. Ergod. Theory Dyn. Sys. 34, 1365–1394 (2014)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Willis, G.A.: The scale and tidy subgroups for endomorphisms of totally disconnected locally compact groups. Math. Ann. 361, 403–442 (2015)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Wilson, J.S.: Profinite Groups. Clarendon Press, Oxford (1998)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für MathematikUniversität PaderbornPaderbornGermany
  2. 2.University of NewcastleCallaghanAustralia

Personalised recommendations