Abstract
We construct a cooperad which extends the framework of homotopy probability theory to free probability theory. The cooperad constructed, which seems related to the sequence and cactus operads, may be of independent interest.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Berger, C., Fresse, B.: Combinatorial operad actions on cochains. Math. Proc. Camb. Philos. Soc. 137, 135–174 (2004)
Drummond-Cole, G.C.: An operadic approach to operator-valued free cumulants (2016). http://arxiv.org/abs/arxiv:1607.04933
Drummond-Cole, G.C., Terilla, J.: Cones in homotopy probability theory (2014). http://arxiv.org/abs/1410.5506
Drummond-Cole, G.C., Park, J.S., Terilla, J.: Homotopy probability theory I. J. Homotopy Relat. Struct. 10, 425–435 (2015). http://link.springer.com/article/10.1007/s40062-013- 0067-y
Drummond-Cole, G.C., Park, J.S., Terilla, J.: Homotopy probability theory II. J. Homotopy Relat. Struct. 10, 623–635 (2015). http://link.springer.com/article/10.1007/s40062-014- 0078-3
Gálvez-Carrillo, I., Lombardi, L., Tonks, A.: An \(\mathcal {A}_\infty \) operad in spineless cacti. Mediterr. J. Math. 12(4), 1215–1226 (2015)
Getzler, E., Jones, J.D.S.: Operads, homotopy algebra and iterated integrals for double loop spaces (1994). http://arxiv.org/abs/hep-th/9403055
Kaufmann, R.M.: On several varieties of cacti and their relations. Algebr. Geom. Topol. 5, 237–300 (2005)
Kaufmann, R.M.: On spineless cacti, Deligne’s conjecture and Connes–Kreimer’s Hopf algebra. Topology 46(1), 39–88 (2007)
McClure, J.E., Smith, J.H.: Multivariable cochain operations and little n-cubes. J. Am. Math. Soc. 16(3), 681–704 (2003)
Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series, vol. 335. Cambridge University Press, Cambridge (2006)
Novak, J., Śniady, P.: What is…a free cumulant? Not. Am. Math. Soc. 58(2), 300–301 (2011)
Park, J.S.: Flat family of QFTs and quantization of d-algebras (2003). http://arxiv.org/abs/hep-th/0308130
Park, J.S.: Einstein chair lecture (2011). City University of New York
Park, J.S.: Homotopy theory of probability spaces I: classical independence and homotopy Lie algebras (2015). http://arxiv.org/abs/1510.08289
Smirnov, V.: On the cochain complex of topological spaces. Math. USSR Sbornik 43, 133–144 (1982)
Tao, T.: Algebraic probability spaces (2014). https://terrytao.wordpress.com/2014/06/28/algebraic-probability-spaces/. Blog post
Voiculescu, D.: Symmetries of some reduced free product C ∗-algebras. In: Operator Algebras and Their Connections with Topology and Ergodic Theory: Proceedings of the OATE Conference Held in Buşteni, Romania, Aug 29–Sept 9, 1983. Lecture Notes in Mathematics, vol. 1132, pp. 556–588. Springer, Berlin (1985)
Voiculescu, D.: Free probability and the von Neumann algebras of free groups. Rep. Math. Phys. 55(1), 127–133 (2005)
Voronov, A.A.: Notes on universal algebra. In: Graphs and Patterns in Mathematics and Theoretical Physics. Proceedings of Symposia in Pure Mathematics, vol. 73, pp. 81–103. American Mathematical Society, Providence, RI (2005)
Zinbiel, G.W.: Encyclopedia of types of algebras 2010. In: Operads and Universal Algebra. Nankai Series in Pure Applied Mathematical Theoretical Physics, vol. 9, pp. 217–298. World Scientific Publishing, Singapore (2012)
Acknowledgements
The author gratefully acknowledges useful conversations with Joey Hirsh, John Terilla, Jae-Suk Park, and Ben Ward. An anonymous referee made multiple useful observations.
This work was supported by IBS-R003-D1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Drummond-Cole, G.C. (2018). A Non-crossing Word Cooperad for Free Homotopy Probability Theory. In: de Gier, J., Praeger, C., Tao, T. (eds) 2016 MATRIX Annals. MATRIX Book Series, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-72299-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-72299-3_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-72298-6
Online ISBN: 978-3-319-72299-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)