Skip to main content

A Non-crossing Word Cooperad for Free Homotopy Probability Theory

Part of the MATRIX Book Series book series (MXBS,volume 1)

Abstract

We construct a cooperad which extends the framework of homotopy probability theory to free probability theory. The cooperad constructed, which seems related to the sequence and cactus operads, may be of independent interest.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-72299-3_5
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-72299-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, C., Fresse, B.: Combinatorial operad actions on cochains. Math. Proc. Camb. Philos. Soc. 137, 135–174 (2004)

    MathSciNet  CrossRef  Google Scholar 

  2. Drummond-Cole, G.C.: An operadic approach to operator-valued free cumulants (2016). http://arxiv.org/abs/arxiv:1607.04933

  3. Drummond-Cole, G.C., Terilla, J.: Cones in homotopy probability theory (2014). http://arxiv.org/abs/1410.5506

  4. Drummond-Cole, G.C., Park, J.S., Terilla, J.: Homotopy probability theory I. J. Homotopy Relat. Struct. 10, 425–435 (2015). http://link.springer.com/article/10.1007/s40062-013- 0067-y

    MathSciNet  CrossRef  Google Scholar 

  5. Drummond-Cole, G.C., Park, J.S., Terilla, J.: Homotopy probability theory II. J. Homotopy Relat. Struct. 10, 623–635 (2015). http://link.springer.com/article/10.1007/s40062-014- 0078-3

    MathSciNet  CrossRef  Google Scholar 

  6. Gálvez-Carrillo, I., Lombardi, L., Tonks, A.: An \(\mathcal {A}_\infty \) operad in spineless cacti. Mediterr. J. Math. 12(4), 1215–1226 (2015)

    MathSciNet  CrossRef  Google Scholar 

  7. Getzler, E., Jones, J.D.S.: Operads, homotopy algebra and iterated integrals for double loop spaces (1994). http://arxiv.org/abs/hep-th/9403055

  8. Kaufmann, R.M.: On several varieties of cacti and their relations. Algebr. Geom. Topol. 5, 237–300 (2005)

    MathSciNet  CrossRef  Google Scholar 

  9. Kaufmann, R.M.: On spineless cacti, Deligne’s conjecture and Connes–Kreimer’s Hopf algebra. Topology 46(1), 39–88 (2007)

    MathSciNet  CrossRef  Google Scholar 

  10. McClure, J.E., Smith, J.H.: Multivariable cochain operations and little n-cubes. J. Am. Math. Soc. 16(3), 681–704 (2003)

    Google Scholar 

  11. Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series, vol. 335. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  12. Novak, J., Śniady, P.: What is…a free cumulant? Not. Am. Math. Soc. 58(2), 300–301 (2011)

    Google Scholar 

  13. Park, J.S.: Flat family of QFTs and quantization of d-algebras (2003). http://arxiv.org/abs/hep-th/0308130

  14. Park, J.S.: Einstein chair lecture (2011). City University of New York

    Google Scholar 

  15. Park, J.S.: Homotopy theory of probability spaces I: classical independence and homotopy Lie algebras (2015). http://arxiv.org/abs/1510.08289

  16. Smirnov, V.: On the cochain complex of topological spaces. Math. USSR Sbornik 43, 133–144 (1982)

    CrossRef  Google Scholar 

  17. Tao, T.: Algebraic probability spaces (2014). https://terrytao.wordpress.com/2014/06/28/algebraic-probability-spaces/. Blog post

  18. Voiculescu, D.: Symmetries of some reduced free product C ∗-algebras. In: Operator Algebras and Their Connections with Topology and Ergodic Theory: Proceedings of the OATE Conference Held in Buşteni, Romania, Aug 29–Sept 9, 1983. Lecture Notes in Mathematics, vol. 1132, pp. 556–588. Springer, Berlin (1985)

    Google Scholar 

  19. Voiculescu, D.: Free probability and the von Neumann algebras of free groups. Rep. Math. Phys. 55(1), 127–133 (2005)

    MathSciNet  CrossRef  Google Scholar 

  20. Voronov, A.A.: Notes on universal algebra. In: Graphs and Patterns in Mathematics and Theoretical Physics. Proceedings of Symposia in Pure Mathematics, vol. 73, pp. 81–103. American Mathematical Society, Providence, RI (2005)

    Google Scholar 

  21. Zinbiel, G.W.: Encyclopedia of types of algebras 2010. In: Operads and Universal Algebra. Nankai Series in Pure Applied Mathematical Theoretical Physics, vol. 9, pp. 217–298. World Scientific Publishing, Singapore (2012)

    Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges useful conversations with Joey Hirsh, John Terilla, Jae-Suk Park, and Ben Ward. An anonymous referee made multiple useful observations.

This work was supported by IBS-R003-D1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel C. Drummond-Cole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Drummond-Cole, G.C. (2018). A Non-crossing Word Cooperad for Free Homotopy Probability Theory. In: de Gier, J., Praeger, C., Tao, T. (eds) 2016 MATRIX Annals. MATRIX Book Series, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-72299-3_5

Download citation