The aim of these notes is to introduce the intuition motivating the notion of a complicial set, a simplicial set with certain marked “thin” simplices that witness a composition relation between the simplices on their boundary. By varying the marking conventions, complicial sets can be used to model (∞, n)-categories for each n ≥ 0, including n = ∞. For this reason, complicial sets present a fertile setting for thinking about weak infinite dimensional categories in varying dimensions. This overture is presented in three acts: the first introducing simplicial models of higher categories; the second defining the Street nerve, which embeds strict ω-categories as strict complicial sets; and the third exploring an important saturation condition on the marked simplices in a complicial set and presenting a variety of model structures that capture their basic homotopy theory. Scattered throughout are suggested exercises for the reader who wants to engage more deeply with these notions.