Automorphism Groups of Combinatorial Structures

  • Anne ThomasEmail author
Part of the MATRIX Book Series book series (MXBS, volume 1)


This is a series of lecture notes taken by students during a five lecture series presented by Anne Thomas in 2016 at the MATRIX workshop: The Winter of Disconnectedness.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to thank John J. Harrison for kindly sharing his notes. We would also like to thank MATRIX for funding and hosting the Winter of Disconnectedness workshop where these lectures were presented.


  1. 1.
    Agol, I.: The virtual Haken conjecture. Doc. Math. 18, 1045–1087 (2013). With an appendix by Agol, Daniel Groves, and Jason ManningGoogle Scholar
  2. 2.
    Ballmann, W., Brin, M.: Polygonal complexes and combinatorial group theory. Geom. Dedicata. 50(2), 165–191 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ballmann, W., Świ ątkowski, J.: On L 2-cohomology and property (T) for automorphism groups of polyhedral cell complexes. Geom. Funct. Anal. 7(4), 615–645 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bass, H., Lubotzky, A.: Tree Lattices. Progress in Mathematics, vol. 176. Birkhäuser, Boston (2001). With appendices by Bass, Carbone, L., Lubotzky, Rosenberg, G., Tits, J.CrossRefGoogle Scholar
  5. 5.
    Bekka, B., de la Harpe, P., Valette, A.: Kazhdan’s Property (T). New Mathematical Monographs, vol. 11. Cambridge University Press, Cambridge (2008)Google Scholar
  6. 6.
    Bourdon, M.: Immeubles hyperboliques, dimension conforme et rigidité de Mostow. Geom. Funct. Anal. 7(2), 245–268 (1997)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bourdon, M., Pajot, H.: Rigidity of quasi-isometries for some hyperbolic buildings. Comment. Math. Helv. 75(4), 701–736 (2000)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bridson, M.R.: Geodesics and curvature in metric simplicial complexes. Ph.D. thesis, Cornell University. ProQuest LLC, Ann Arbor (1991)Google Scholar
  9. 9.
    Bridson, M.R.: On the semisimplicity of polyhedral isometries. Proc. Amer. Math. Soc. 127(7), 2143–2146 (1999)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature, vol. 319. Springer, New York (2011)Google Scholar
  11. 11.
    Burger, M., Mozes, S.: Lattices in product of trees. Inst. Hautes Études Sci. Publ. Math. 92, 151–194 (2000/2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Caprace, P.-E.: Automorphism groups of right-angled buildings: simplicity and local splittings. Fund. Math. 224(1), 17–51 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Caprace, P.-E., Remy, B.: Simplicity and superrigidity of twin building lattices. ArXiv Mathematics e-prints (July, 2006)Google Scholar
  14. 14.
    Carbone, L., Garland, H.: Existence of lattices in Kac-Moody groups over finite fields. Commun. Contemp. Math. 05(05), 813–867 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Cartwright, D.I., Mantero, A.M., Steger, T., Zappa, A.: Groups acting simply transitively on the vertices of a building of type \(\tilde {A}_2\). I. Geom. Dedicata. 47(2), 143–166 (1993)Google Scholar
  16. 16.
    Davis, M.W.: Buildings are CAT(0). In: Geometry and Cohomology in Group Theory (Durham, 1994). London Mathematical Society Lecture Note Series, vol. 252, pp. 108–123. Cambridge University Press, Cambridge (1998)Google Scholar
  17. 17.
    Davis, M.W.: The geometry and topology of Coxeter groups. In: Introduction to Modern Mathematics. Advanced Lectures in Mathematics (ALM), vol. 33, pp. 129–142. International Press, Somerville (2015)Google Scholar
  18. 18.
    De Medts, T., Silva, A.C., Struyve, K.: Universal groups for right-angled buildings. ArXiv e-prints (March, 2016)Google Scholar
  19. 19.
    Eberlein, P.B.: Geometry of Nonpositively Curved Manifolds. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1996)Google Scholar
  20. 20.
    Farb, B., Hruska, G.C.: Commensurability invariants for nonuniform tree lattices. Isr. J. Math. 152, 125–142 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Farb, B., Hruska, C., Thomas, A.: Problems on automorphism groups of nonpositively curved polyhedral complexes and their lattices. In: Geometry, Rigidity, and Group Actions. Chicago Lectures in Mathematics, pp. 515–560. University of Chicago Press, Chicago (2011)Google Scholar
  22. 22.
    Gelander, T., Levit, A.: Local rigidity of uniform lattices. ArXiv e-prints (May 2016)Google Scholar
  23. 23.
    Gromov, M.: Hyperbolic groups. In: Essays in Group Theory. Publications of the Research Institute for Mathematical Sciences, vol. 8, pp. 75–263. Springer, New York (1987)CrossRefGoogle Scholar
  24. 24.
    Haglund, F.: Les polyèdres de Gromov. C. R. Acad. Sci. Paris Sér. I Math. 313(9), 603–606 (1991)Google Scholar
  25. 25.
    Haglund, F., Paulin, F.: Simplicité de groupes d’automorphismes d’espaces à courbure négative. In: The Epstein Birthday Schrift. Geometry & Topology Monographs, vol. 1, pp. 181–248 (electronic). Geometry & Topology Publications, Coventry (1998)Google Scholar
  26. 26.
    Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Graduate Studies in Mathematics, vol. 34. American Mathematical Society, Providence (2001). Corrected reprint of the 1978 originalGoogle Scholar
  27. 27.
    Katok, S.: Fuchsian Groups. University of Chicago Press, Chicago (1992)Google Scholar
  28. 28.
    Kleiner, B., Leeb, B.: Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings. C. R. Acad. Sci. Paris Sér. I Math. 324(6), 639–643 (1997)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Krifka, Y.: Geometric and topological aspects of Coxeter groups and buildings (June, 2016).
  30. 30.
    Lazarovich, N.: Uniqueness of homogeneous CAT(0) polygonal complexes. Geom. Dedicata. 168(1), 397–414 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Lubotzky, A.: Tree-lattices and lattices in Lie groups. In: Combinatorial and Geometric Group Theory (Edinburgh, 1993). London Mathematical Society Lecture Note Series, vol. 204, pp. 217–232. Cambridge University Press, Cambridge (1995)Google Scholar
  32. 32.
    Margulis, G.A.: Discrete Subgroups of Semisimple Lie Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17. Springer, Berlin (1991)CrossRefGoogle Scholar
  33. 33.
    Moussong, G.: Hyperbolic coxeter groups. Ph.D. thesis, The Ohio State University. ProQuest LLC, Ann Arbor (1988)Google Scholar
  34. 34.
    Raghunathan, M.S.: Discrete subgroups of Lie groups. Math. Student Special Centenary Volume (2007), 59–70 (2008)Google Scholar
  35. 35.
    Rémy, B.: Construction de réseaux en théorie de Kac-Moody. C. R. Acad. Sci. Paris Sér. I Math. 329(6), 475–478 (1999)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Serre, J.P.: Trees Translated from the French by John Stillwell. Springer, Berlin (1980)zbMATHGoogle Scholar
  37. 37.
    Siegel, C.L.: Some remarks on discontinuous groups. Ann. Math. 46(4), 708–718 (1945)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Thomas, A.: Lattices acting on right-angled buildings. Algebr. Geom. Topol. 6, 1215–1238 (2006)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Thomas, A.: Existence, covolumes and infinite generation of lattices for Davis complexes. Groups Geom. Dyn. 6(4), 765–801 (2012)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Thomas, A., Wortman, K.: Infinite generation of non-cocompact lattices on right-angled buildings. Algebr. Geom. Topol. 11(2), 929–938 (2011)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Tits, J.: Buildings of Spherical Type and Finite BN-Pairs. Lecture Notes in Mathematics, vol. 386. Springer, Berlin/New York (1974)Google Scholar
  42. 42.
    Weil, A.: On discrete subgroups of Lie groups. Ann. Math. (2) 72, 369–384 (1960)CrossRefGoogle Scholar
  43. 43.
    Weil, A.: On discrete subgroups of Lie groups. II. Ann. Math. (2) 75, 578–602 (1962)Google Scholar
  44. 44.
    White, G.: Covolumes of latticies in automorphism groups of trees and Davis complexes (2012). MSc thesisGoogle Scholar
  45. 45.
    Xie X.: Quasi-isometric rigidity of Fuchsian buildings. Topology 45(1), 101–169 (2006)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Zimmer, R.J.: Ergodic Theory and Semisimple Groups. Monographs in Mathematics, vol. 81. Birkhäuser, Basel (1984)CrossRefGoogle Scholar
  47. 47.
    Żuk, A.: La propriété (T) de Kazhdan pour les groupes agissant sur les polyèdres. C. R. Acad. Sci. Paris Sér. I Math. 323(5), 453–458 (1996)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsThe University of SydneyCamperdownAustralia

Personalised recommendations