Groups of Automorphisms and Almost Automorphisms of Trees: Subgroups and Dynamics

Chapter
Part of the MATRIX Book Series book series (MXBS, volume 1)

Abstract

These are notes of a lecture series delivered during the program Winter of Disconnectedness in Newcastle, Australia, 2016. The exposition is on several families of groups acting on trees by automorphisms or almost automorphisms, such as Neretin’s groups, Thompson’s groups, and groups acting on trees with almost prescribed local action. These include countable discrete groups as well as locally compact groups. The focus is on the study of certain subgroups, e.g. finite covolume subgroups, or subgroups satisfying certain normality conditions, such as commensurated subgroups or uniformly recurrent subgroups.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

I wish to thank the organizers of the program Winter of Disconnectedness which took place in Newcastle, Australia, in 2016, for the invitation to give this series of lectures, and also for the encouragement to make these notes available. I would particularly like to thank Colin Reid and George Willis for welcoming me so warmly. ERC grant #278469 partially supported my participation in this program, and this support is gratefully acknowledged. Finally thanks are due to Ben Brawn for pointing out typos and mistakes in a former version of these notes.

References

  1. 1.
    Abért, M., Glasner, Y., Virág, B.: Kesten’s theorem for invariant random subgroups. Duke Math. J. 163(3), 465–488 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arzhantseva, G., Minasyan, A.: Relatively hyperbolic groups are C -simple. J. Funct. Anal. 243(1), 345–351 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bader, U., Caprace, P.-E., Gelander, T., Mozes, S.: Simple groups without lattices. Bull. Lond. Math. Soc. 44(1), 55–67 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Banks, C., Elder, M., Willis, G.: Simple groups of automorphisms of trees determined by their actions on finite subtrees. J. Group Theory 18(2), 235–261 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bekka, M., Cowling, M., de la Harpe, P.: Some groups whose reduced C -algebra is simple. Publ. Math. l’IHÉS 80, 117–134 (1994)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bridson, M., de la Harpe, P.: Mapping class groups and outer automorphism groups of free groups are C -simple. J. Funct. Anal. 212(1), 195–205 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Breuillard, E., Kalantar, M., Kennedy, M., Ozawa, N.: C -simplicity and the unique trace property for discrete groups (2014). Preprint. arXiv:1410.2518Google Scholar
  8. 8.
    Burger, M., Mozes, S.: Groups acting on trees: from local to global structure. Publ. Math. l’IHÉS 92, 113–150 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cannon, J.W., Floyd, W.J., Parry, W.R.: Introductory notes on Richard Thompson’s groups. Enseign. Math. (2) 42(3-4), 215–256 (1996)Google Scholar
  10. 10.
    Caprace, P.-E.: Automorphism groups of right-angled buildings: simplicity and local splittings (2012). Preprint. arXiv:1210.7549Google Scholar
  11. 11.
    Caprace, P.E., De Medts, T.: Simple locally compact groups acting on trees and their germs of automorphisms. Transformation Groups 16(2), 375–411 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Caprace, P.-E., Monod, N.: Decomposing locally compact groups into simple pieces. Math. Proc. Camb. Philos. Soc. 150, 97–128 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Caprace, P.-E., Reid, C., Willis, G.: Locally normal subgroups of totally disconnected groups. Part I: general theory (2013). arXiv:1304.5144v1Google Scholar
  14. 14.
    Caprace, P.-E., Reid, C., Willis, G.: Locally normal subgroups of totally disconnected groups. Part II: compactly generated simple groups (2014). arXiv:1401.3142v1Google Scholar
  15. 15.
    Dahmani, F., Guirardel, V., Osin, D.: Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces (2011). Preprint. arXiv:1111.7048Google Scholar
  16. 16.
    de la Harpe, P.: Groupes hyperboliques, algebres d’opérateurs et un théoreme de jolissaint. CR Acad. Sci. Paris Sér. I Math. 307(14), 771–774 (1988)MATHGoogle Scholar
  17. 17.
    de la Harpe, P.: On simplicity of reduced C -algebras of groups. Bull. Lond. Math. Soc. 39(1), 1–26 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Glasner, E., Weiss, B.: Uniformly recurrent subgroups. Recent Trends in Ergodic Theory and Dynamical Systems. Contemporary Mathematics, vol. 631, pp. 63–75. American Mathematical Society, Providence, RI, (2015)Google Scholar
  19. 19.
    Haagerup, U., Olesen, K.K.: The thompson groups t and v are not inner-amenable (2014). PreprintGoogle Scholar
  20. 20.
    Haglund, F., Paulin, F.: Simplicité de groupes d’automorphismes d’espaces a courbure négative. Geometry and Topology Monographs, vol. 1. International Press, Vienna (1998)Google Scholar
  21. 21.
    Kalantar, M., Kennedy, M.: Boundaries of reduced C -algebras of discrete groups. J. Reine Angew. Math. 727, 247–267 (2017)MathSciNetMATHGoogle Scholar
  22. 22.
    Kapoudjian, C.: Simplicity of Neretin’s group of spheromorphisms. Ann. Inst. Fourier 49, 1225–1240 (1999)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kennedy, M.: Characterizations of C -simplicity (2015). arXiv:1509.01870v3Google Scholar
  24. 24.
    Lazarovich, N.: On regular cat (0) cube complexes (2014). Preprint. arXiv:1411.0178Google Scholar
  25. 25.
    Le Boudec, A.: Compact presentability of tree almost automorphism groups. Ann. Inst. Fourier (Grenoble) 67(1), 329–365 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Le Boudec, A.: Groups acting on trees with almost prescribed local action. Comment. Math. Helv. 91(2), 253–293 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Le Boudec, A., Matte Bon, N.: Subgroup dynamics and C -simplicity of groups of homeomorphisms (2016). arXiv:1605.01651Google Scholar
  28. 28.
    Le Boudec, A., Wesolek, P.: Commensurated subgroups in tree almost automorphism groups (2016). arXiv preprint arXiv:1604.04162Google Scholar
  29. 29.
    Lodha, Y., Moore, J.: A nonamenable finitely presented group of piecewise projective homeomorphisms. Groups Geom. Dyn. 10(1), 177–200 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Monod, N.: Groups of piecewise projective homeomorphisms. Proc. Natl. Acad. Sci. 110(12), 4524–4527 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Möller, R., Vonk, J.: Normal subgroups of groups acting on trees and automorphism groups of graphs. J. Group Theory 15, 831–850 (2012)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Neretin, Yu.A.: Combinatorial analogues of the group of diffeomorphisms of the circle. Izv. Ross. Akad. Nauk Ser. Mat. 56(5), 1072–1085 (1992)MATHGoogle Scholar
  33. 33.
    Neumann, B.H.: Groups covered by permutable subsets. J. Lond. Math. Soc. 29, 236–248 (1954)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Olshanskii, A., Osin, D.: C -simple groups without free subgroups (2014). arXiv:1401.7300v3Google Scholar
  35. 35.
    Paschke, W., Salinas, N.: C -algebras associated with free products of groups. Pac. J. Math. 82(1), 211–221 (1979)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Pays, I., Valette, A.: Sous-groupes libres dans les groupes d’automorphismes d’arbres. Enseign. Math., Rev. Int., IIe Sér. 151–174 (1991)Google Scholar
  37. 37.
    Powers, R.T.: Simplicity of the C -algebra associated with the free group on two generators. Duke Math. J. 42(1), 151–156 (1975)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Poznansky, T.: Characterization of linear groups whose reduced C -algebras are simple (2008). Preprint. arXiv:0812.2486Google Scholar
  39. 39.
    Sauer, R., Thumann, W.: Topological models of finite type for tree almost-automorphism groups (2015). Preprint. arXiv:1510.05554Google Scholar
  40. 40.
    Serre, J.-P.: Trees, pp. ix+142. Springer, Berlin (1980)CrossRefGoogle Scholar
  41. 41.
    Shalom, Y., Willis, G.: Commensurated subgroups of arithmetic groups, totally disconnected groups and adelic rigidity. Geom. Funct. Anal. 23(5), 1631–1683 (2013)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Sidki, S., Wilson, J.S.: Free subgroups of branch groups. Arch. Math. 80(5), 458–463 (2003)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Swiatoslaw, G., Gismatullin, J., with an appendix by N. Lazarovich, Uniform symplicity of groups with proximal action (2016). Preprint. arXiv:1602.08740Google Scholar
  44. 44.
    Tits, J.: Sur le groupe d’automorphismes d’un arbre. Essays on Topology and Related Topics, pp. 188–211. Springer, Berlin (1970)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations