Skip to main content

Moduli Spaces of (Bi)algebra Structures in Topology and Geometry

  • Chapter
  • First Online:
2016 MATRIX Annals

Part of the book series: MATRIX Book Series ((MXBS,volume 1))

  • 943 Accesses

Abstract

After introducing some motivations for this survey, we describe a formalism to parametrize a wide class of algebraic structures occurring naturally in various problems of topology, geometry and mathematical physics. This allows us to define an “up to homotopy version” of algebraic structures which is coherent (in the sense of -category theory) at a high level of generality. To understand the classification and deformation theory of these structures on a given object, a relevant idea inspired by geometry is to gather them in a moduli space with nice homotopical and geometric properties. Derived geometry provides the appropriate framework to describe moduli spaces classifying objects up to weak equivalences and encoding in a geometrically meaningful way their deformation and obstruction theory. As an instance of the power of such methods, I will describe several results of a joint work with Gregory Ginot related to longstanding conjectures in deformation theory of bialgebras, E n -algebras and quantum group theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anel, M.: Champs de modules des catégories linéaires et abéliennes, PhD thesis, Université Toulouse III - Paul Sabatier (2006)

    Google Scholar 

  2. Blanc, D., Dwyer, W.G., Goerss, P.G.: The realization space of a Π-algebra: a moduli problem in algebraic topology. Topology 43, 857–892 (2004)

    Article  MathSciNet  Google Scholar 

  3. Calaque, D., Willwacher, T.: Triviality of the higher Formality Theorem. Proc. Am. Math. Soc. 143(12), 5181–5193 (2015)

    Article  MathSciNet  Google Scholar 

  4. Calaque, D., Pantev, T., Toen, B., Vaquié, M., Vezzosi, G.: Shifted Poisson structures and deformation quantization, J. Topology 10, 483–484 (2017)

    Article  MathSciNet  Google Scholar 

  5. Campos, R., Merkulov, S., Willwacher, T.: The Frobenius properad is Koszul. Duke Math. J. 165(15), 2921–2989 (2016)

    Article  MathSciNet  Google Scholar 

  6. Chas, M., Sullivan, D.: Closed string operators in topology leading to Lie bialgebras and higher string algebra. In: The Legacy of Niels Henrik Abel, pp. 771–784. Springer, Berlin (2004)

    Chapter  Google Scholar 

  7. Chas, M., Sullivan, D.: String Topology (1999). Preprint. arXiv:math/9911159

    Google Scholar 

  8. Cieliebak, K., Latschev, J.: The role of string topology in symplectic field theory. In: New Perspectives and Challenges in Symplectic Field Theory. CRM Proceedings of Lecture Notes, vol. 49, pp. 113–146. American Mathematical Society, Providence, RI (2009)

    Google Scholar 

  9. Cieliebak, K., Fukaya, K., Latschev, J.: Homological algebra related to surfaces with boundary (2015). Preprint. arXiv:1508.02741

    Google Scholar 

  10. Drinfeld, V.G.: Quantum groups. In: Proceedings of the International Congress of Mathematicians, vols. 1, 2, Berkeley, CA, 1986, pp. 798–820. American Mathematical Society, Providence, RI (1987)

    Google Scholar 

  11. Drinfeld, V.G.: On quasitriangular quasi-Hopf algebras and on a group that is closely connected with \(Gal(\overline {Q}/Q\). Algebra i Analiz 2, 149–181 (1990). English translation in Leningrad Math. J. 2 (1991), 829–860

    Google Scholar 

  12. Dwyer, W.G., Kan, D.: Function complexes in homotopical algebra. Topology 19, 427–440 (1980)

    Article  MathSciNet  Google Scholar 

  13. Dwyer, W.G., Kan, D.: A classification theorem for diagrams of simplicial sets. Topology 23, 139–155 (1984)

    Article  MathSciNet  Google Scholar 

  14. Enriquez, B., Etingof, P.: On the invertibility of quantization functors. J. Algebra 289(2), 321–345 (2005)

    Article  MathSciNet  Google Scholar 

  15. Enriquez, B., Halbout, G.: Quantization of quasi-Lie bialgebras. J. Am. Math. Soc. 23, 611–653 (2010)

    Article  MathSciNet  Google Scholar 

  16. Etingof, P., Kazhdan, D.: Quantization of Lie bialgebras I. Sel. Math. (N. S.) 2(1), 1–41 (1996)

    Google Scholar 

  17. Etingof, P., Kazdhan, D.: Quantization of Lie bialgebras. II, III. Sel. Math. (N.S.) 4(2), 213–231, 233–269 (1998)

    Google Scholar 

  18. Félix, Y., Thomas, J.-C.: Rational BV-algebra in string topology. Bull. Soc. Math. France 136, 311–327 (2008)

    Article  MathSciNet  Google Scholar 

  19. Fjelstad, J., Fuchs, J., Runkel, I., Schweigert, C.: Topological and conformal field theory as Frobenius algebras. In: Categories in Algebra, Geometry and Mathematical Physics. Contemporary Mathematics, vol. 431, pp. 225–247. American Mathematical Society, Providence, RI (2007)

    Google Scholar 

  20. Francis, J., Gaitsgory, D.: Chiral Koszul duality. Sel. Math. New Ser. 18, 27–87 (2012)

    Article  MathSciNet  Google Scholar 

  21. Francis, J.: The tangent complex and Hochschild cohomology of E n -rings. Compos. Math. 149(3), 430–480 (2013)

    Google Scholar 

  22. Fresse, B.: Modules Over Operads and Functors. Lecture Notes in Mathematics 1967. Springer, Berlin (2009)

    Chapter  Google Scholar 

  23. Fresse, B.: Props in model categories and homotopy invariance of structures. Georgian Math. J. 17, 79–160 (2010)

    Google Scholar 

  24. Fresse, B.: Homotopy of operads and Grothendieck-Teichmuller groups I and II. Mathematical Surveys and Monographs (to appear). AMS. http://math.univ-lille1.fr/~fresse/OperadHomotopyBook/

  25. Fresse, B., Willwacher, T.: The intrinsic formality of E n -operads (2015). Preprint. arXiv:1503.08699

    Google Scholar 

  26. Galvez-Carillo, I., Tonks, A., Vallette, B.: Homotopy Batalin-Vilkovisky algebras. J. Noncommut. Geom. 6, 539–602 (2012)

    Article  MathSciNet  Google Scholar 

  27. Gerstenhaber, M., Schack, S.D.: Algebras, bialgebras, quantum groups, and algebraic deformations. In: Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Amherst, MA, 1990). Contemporary Mathematics, vol. 134, pp. 51–92. American Mathematical Society, Providence, RI (1992)

    Google Scholar 

  28. Getzler, E., Jones, J.D.S.: Operads, homotopy algebra and iterated integrals for double loop spaces (1994). Preprint. arXiv:hep-th/9403055

    Google Scholar 

  29. Ginot, G., Halbout, G.: A formality theorem for poisson manifolds. Lett. Math. Phys. 66, 37–64 (2003)

    Article  MathSciNet  Google Scholar 

  30. Ginot, G., Yalin, S.: Deformation theory of bialgebras, higher Hochschild cohomology and formality (2016). Preprint. arXiv:1606.01504

    Google Scholar 

  31. Ginot, G., Tradler, T., Zeinalian, M.: Higher hochschild homology, topological chiral homology and factorization algebras. Commun. Math. Phys. 326(3), 635–686 (2014)

    Article  MathSciNet  Google Scholar 

  32. Ginot, G., Tradler, T., Zeinalian, M.: Higher Hochschild cohomology of E-infinity algebras, Brane topology and centralizers of E-n algebra maps (2014). Preprint. arXiv:1205.7056

    Google Scholar 

  33. Goerss, P.G., Hopkins, M.J.: Moduli spaces of commutative ring spectra. In: Structured Ring Spectra. London Mathematical Society Lecture Note Series, vol. 315, pp. 151–200. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  34. Goldman, W.M.: The symplectic nature of fundamental groups of surfaces. Adv. Math. 54, 200–225 (1984)

    Article  MathSciNet  Google Scholar 

  35. Goldman, W.M.: Invariant functions on Lie groups and Hamiltonian flows of surface group representations. Invent. Math. 85(2), 263–302 (1986)

    Article  MathSciNet  Google Scholar 

  36. Goldman, W.M., Millson, J.: The deformation theory of representations of fundamental groups of compact Kähler manifolds. Publ. Math. IHES 67, 43–96 (1988)

    Article  Google Scholar 

  37. Hennion, B.: Tangent Lie algebra of derived Artin stacks, to appear in J. für die reine und angewandte Math., published online (2015). DOI http://dx.doi.org/10.1515/crelle-2015-0065

  38. Hinich, V.: DG coalgebras as formal stacks. J. Pure Appl. Algebra 162, 209–250 (2001)

    Article  MathSciNet  Google Scholar 

  39. Hinich, V.: Tamarkin’s proof of Kontsevich formality theorem. Forum Math. 15, 591–614 (2003)

    Google Scholar 

  40. Hirschhorn, P.S.: Model Categories and Their Localizations. Mathematical Surveys and Monographs, vol. 99. American Mathematical Society, Providence, RI (2003)

    Google Scholar 

  41. Hovey, M.: Model Categories. Mathematical Surveys and Monographs, vol. 63. American Mathematical Society, Providence, RI (1999)

    Chapter  Google Scholar 

  42. Kapustin, A.: Topological field theory, higher categories, and their applications. In: Proceedings of the International Congress of Mathematicians, vol. III, pp. 2021–2043. Hindustan Book Agency, New Delhi (2010)

    Google Scholar 

  43. Keller, B., Lowen, W.: On Hochschild cohomology and Morita deformations. Int. Math. Res. Not. IMRN 2009(17), 3221–3235 (2009)

    Google Scholar 

  44. Kock, J.: Frobenius Algebras and 2D Topological Quantum Field Theories. London Mathematical Society Student Texts, vol. 59. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  45. Kontsevich, M.: Operads and motives in deformation quantization, Moshé Flato (1937–1998). Lett. Math. Phys. 48(1), 35–72 (1999)

    Google Scholar 

  46. Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003)

    Article  MathSciNet  Google Scholar 

  47. Lambrechts, P., Volic, I.: Formality of the little N-disks operad. Mem. Am. Math. Soc. vol. 230, no. 1079. American Mathematical Society, Providence, RI (2014)

    Google Scholar 

  48. Lauda, A.D., Pfeiffer, H.: Open-closed strings: two-dimensional extended TQFTs and Frobenius algebras. Topol. Appl. 155, 623–666 (2008)

    Article  MathSciNet  Google Scholar 

  49. Loday, J-L., Vallette, B.: Algebraic Operads. Grundlehren der mathematischen Wissenschaften, vol. 346. Springer, Berlin (2012)

    Book  Google Scholar 

  50. Lurie, J.: Derived Algebraic Geometry X (2011). http://www.math.harvard.edu/~lurie/

  51. Lurie, J.: Higher Algebra (2017). http://www.math.harvard.edu/~lurie/

  52. MacLane, S.: Categorical algebra. Bull. Am. Math. Soc. 71, 40–106 (1965)

    Article  MathSciNet  Google Scholar 

  53. Mandell, M.A.: Cochains and homotopy type. Publ. Math. IHES 103, 213–246 (2006)

    Article  MathSciNet  Google Scholar 

  54. Markl, M.: Intrinsic brackets and the L-infinity deformation theory of bialgebras. J. Homotopy Relat. Struct. 5(1), 177–212 (2010)

    Google Scholar 

  55. May, J.P.: The Geometry of Iterated Loop Spaces. Springer, Berlin (1972)

    Google Scholar 

  56. Merkulov, S.: Prop profile of Poisson geometry. Commun. Math. Phys. 262, 117–135 (2006)

    Article  MathSciNet  Google Scholar 

  57. Merkulov, S.: Formality theorem for quantization of Lie bialgebras. Lett. Math. Phys. 106(2), 169–195 (2016)

    Article  MathSciNet  Google Scholar 

  58. Merkulov, S., Vallette, B.: Deformation theory of representation of prop(erad)s I. J. für die reine und angewandte Math. (Crelles Journal) 634, 51–106 (2009)

    Google Scholar 

  59. Merkulov, S., Vallette, B.: Deformation theory of representation of prop(erad)s II. J. für die reine und angewandte Math. (Crelles Journal) 636, 125–174 (2009)

    Google Scholar 

  60. Pantev, T., Toen, B., Vaquié, M., Vezzosi, G.: Shifted symplectic structures. Inst. Hautes Études Sci. Publ. Math. 117, 271–328 (2013)

    Article  MathSciNet  Google Scholar 

  61. Preygel, A.: Thom-Sebastiani and Duality for Matrix Factorizations, and Results on the Higher Structures of the Hochschild Invariants. Thesis (Ph.D.), M.I.T. (2012)

    Google Scholar 

  62. Pridham, J.P.: Unifying derived deformation theories. Adv. Math. 224, 772–826 (2010)

    Article  MathSciNet  Google Scholar 

  63. Pridham, J.P.: Presenting higher stacks as simplicial schemes. Adv. Math. 238, 184–245 (2013)

    Article  MathSciNet  Google Scholar 

  64. Reshetikhin, N., Turaev, V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103(3), 547–597 (1991)

    Article  MathSciNet  Google Scholar 

  65. Rezk, C.W.: Spaces of algebra structures and cohomology of operads, Thesis, MIT (1996)

    Google Scholar 

  66. Shoikhet, B.: Tetramodules over a bialgebra form a 2-fold monoidal category. Appl. Categ. Struct. 21(3), 291–309 (2013)

    Article  MathSciNet  Google Scholar 

  67. Simpson, C.: Moduli of representations of the fundamental group of a smooth projective variety. Publ. Math. IHES 80, 5–79 (1994)

    Article  MathSciNet  Google Scholar 

  68. Sullivan, D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. 47, 269–331 (1977)

    Article  MathSciNet  Google Scholar 

  69. Tamarkin, D.: Another proof of M. Kontsevich formality theorem (1998). Preprint. arXiv:math/9803025

    Google Scholar 

  70. Tamarkin, D.: Formality of chain operad of little discs. Lett. Math. Phys. 66, 65–72 (2003)

    Article  MathSciNet  Google Scholar 

  71. Tamarkin, D.: Deformation complex of a d-algebra is a (d+1)-algebra (2000). Preprint. arXiv:math/0010072

    Google Scholar 

  72. Toën, B.: Derived algebraic geometry. EMS Surv. Math. Sci. 1(2), 153–240 (2014)

    Article  MathSciNet  Google Scholar 

  73. Toën, B.: Derived Algebraic Geometry and Deformation Quantization. ICM Lecture (2014). arXiv:1403.6995v4

    Google Scholar 

  74. Toën, B., Vezzosi, G.: Homotopical algebraic geometry II. Geometric stacks and applications. Mem. Am. Math. Soc. 193(902), x+224 (2008)

    Article  MathSciNet  Google Scholar 

  75. Turaev, V.G.: Skein quantization of Poisson algebras of loops on surfaces. Ann. Sci. École Norm. Sup. 24(6), 635–704 (1991)

    Article  MathSciNet  Google Scholar 

  76. Vallette, B.: A Koszul duality for props. Trans. Am. Math. Soc. 359, 4865–4943 (2007)

    Article  MathSciNet  Google Scholar 

  77. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989)

    Article  MathSciNet  Google Scholar 

  78. Yalin, S.: Classifying spaces of algebras over a prop. Algebr. Geom. Topol. 14(5), 2561–2593 (2014)

    Article  MathSciNet  Google Scholar 

  79. Yalin, S.: Simplicial localization of homotopy algebras over a prop. Math. Proc. Cambridge Philos. Soc. 157(3), 457–468 (2014)

    Article  MathSciNet  Google Scholar 

  80. Yalin, S.: Maurer-Cartan spaces of filtered L algebras. J. Homotopy Relat. Struct. 11, 375–407 (2016)

    Article  MathSciNet  Google Scholar 

  81. Yalin, S.: Moduli stacks of algebraic structures and deformation theory. J. Noncommut. Geom. 10, 579–661 (2016)

    Article  MathSciNet  Google Scholar 

  82. Yalin, S.: Function spaces and classifying spaces of algebras over a prop. Algebr. Geom. Topology 16, 2715–2749 (2016)

    Article  MathSciNet  Google Scholar 

  83. Yalin, S.: Realization spaces of algebraic structures on chains. Int. Math. Res. Not. 2018, 236–291 (2018)

    Google Scholar 

Download references

Acknowledgements

The idea of writing such a survey originates in the inaugural 2-week program at the mathematical research institute MATRIX in Australia called Higher Structures in Geometry and Physics, which took place in June 2016. The author gave a talk at this program about moduli spaces of algebraic structures and their application to the recent paper [30]. The present article is somehow a (largely) extended version of his talk, which will be eventually part of a Proceedings Volume devoted to this workshop. The author would like to thank the MATRIX institute for supporting this program, the organizers of this programme for inviting him, and all the participants for their interest and for the very enjoyable atmosphere during the 2 weeks spent there. Last but not least, kangaroos are very much thanked for their natural awesomeness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Yalin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yalin, S. (2018). Moduli Spaces of (Bi)algebra Structures in Topology and Geometry. In: de Gier, J., Praeger, C., Tao, T. (eds) 2016 MATRIX Annals. MATRIX Book Series, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-72299-3_20

Download citation

Publish with us

Policies and ethics