Lectures on Feynman Categories

  • Ralph M. KaufmannEmail author
Part of the MATRIX Book Series book series (MXBS, volume 1)


These are expanded lecture notes from lectures given at the Workshop on higher structures at MATRIX Melbourne. These notes give an introduction to Feynman categories and their applications. Feynman categories give a universal categorical way to encode operations and relations. This includes the aspects of operad-like theories such as PROPs, modular operads, twisted (modular) operads, properads, hyperoperads and their colored versions. There is more depth to the general theory as it applies as well to algebras over operads and an abundance of other related structures, such as crossed simplicial groups, the augmented simplicial category or FI-modules. Through decorations and transformations the theory is also related to the geometry of moduli spaces. Furthermore the morphisms in a Feynman category give rise to Hopf- and bi-algebras with examples coming from topology, number theory and quantum field theory. All these aspects are covered.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



I thankfully acknowledge my co-authors with whom it has been a pleasure to work. I furthermore thank the organizers of the MATRIX workshop for providing the opportunity to give these lectures and for arranging the special issue.

The work presented here has at various stages been supported by the Humboldt Foundation, the Institute for Advanced Study, the Max–Planck Institute for Mathematics, the IHES and by the NSF. Current funding is provided by the Simons foundation.


  1. 1.
    Barannikov, S.: Modular operads and Batalin-Vilkovisky geometry. Int. Math. Res. Not. IMRN (19), Art. ID rnm075, 31 (2007)Google Scholar
  2. 2.
    Batanin, M., Berger, C.: Homotopy theory for algebras over polynomial monads (2013).
  3. 3.
    Baues, H.J.: The double bar and cobar constructions. Compos. Math. 43(3), 331–341 (1981)Google Scholar
  4. 4.
    Berger, C., Kaufmann, R.M.: Comprehensive factorisation systems. Special issue in honor of Professors Peter J. Freyd and F. William Lawvere on the occasion of their 80th birthdays. Tbillisi Math. J. 10(3), 255–277 (2017)Google Scholar
  5. 5.
    Berger, C., Kaufmann, R.M.: Derived Feynman categories and modular geometry, (2018)Google Scholar
  6. 6.
    Borisov, D.V., Manin, Y.I.: Generalized operads and their inner cohomomorphisms. In: Geometry and Dynamics of Groups and Spaces. Progress in Mathematics, vol. 265 pp. 247–308. Birkhäuser, Basel (2008)Google Scholar
  7. 7.
    Brown, F.: Feynman amplitudes and cosmic Galois group (2015). Preprint. arxiv:1512.06409Google Scholar
  8. 8.
    Chapoton, F.: On some anticyclic operads. Algebr. Geom. Topol. 5, 53–69 (electronic) (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Church, T., Ellenberg, J.S., Farb, B.: FI-modules: a new approach to stability for S n-representations (2012). arXiv:1204.4533Google Scholar
  10. 10.
    Conant, J., Vogtmann, K.: On a theorem of Kontsevich. Algebr. Geom. Topol. 3, 1167–1224 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Connes, A., Kreimer, D.: Hopf algebras, renormalization and noncommutative geometry. Commun. Math. Phys. 199(1), 203–242 (1998)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Foissy, L.: Les algèbres de Hopf des arbres enracinés décorés. II. Bull. Sci. Math. 126(4), 249–288 (2002)Google Scholar
  13. 13.
    Fresse, B.: Props in model categories and homotopy invariance of structures. Georgian Math. J. 17(1), 79–160 (2010)Google Scholar
  14. 14.
    Gálvez-Carrillo, I., Kaufmann, R.M., Tonks, A.: Hopf algebras from cooperads and Feynman categories (2016). arXiv:1607.00196Google Scholar
  15. 15.
    Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. of Math. (2) 78, 267–288 (1963)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Getzler, E.: Operads revisited. In: Algebra, Arithmetic, and Geometry: In Honor of Yu. I. Manin, vol. I. Progress in Mathematics, vol. 269 pp. 675–698. Birkhäuser, Boston, MA (2009)CrossRefGoogle Scholar
  17. 17.
    Getzler, E., Jones J.D.S.: Operads, homotopy algebra and iterated integrals for double loop spaces (1994).
  18. 18.
    Getzler, E., Kapranov, M.M.: Cyclic operads and cyclic homology. In: Geometry, Topology, & Physics, Conference Proceedings and Lecture Notes in Geometry and Topology, vol. IV, pp. 167–201. International Press, Cambridge, MA (1995)Google Scholar
  19. 19.
    Getzler, E., Kapranov, M.M.: Modular operads. Compos. Math. 110(1), 65–126 (1998)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Goncharov, A.B.: Galois symmetries of fundamental groupoids and noncommutative geometry. Duke Math. J. 128(2), 209–284 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Harrelson, E., Voronov, A.A., Javier Zúñiga, J.: Open-closed moduli spaces and related algebraic structures. Lett. Math. Phys. 94(1), 1–26 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Joni, S.A., Rota, G.-C.: Coalgebras and bialgebras in combinatorics. Stud. Appl. Math. 61(2), 93–139 (1979)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102(1), 20–78 (1993)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kapranov, M., Manin, Yu.: Modules and Morita theorem for operads. Am. J. Math. 123(5), 811–838 (2001)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kaufmann, R.M.: Feynman categories in quantum field theory (in progress)Google Scholar
  26. 26.
    Kaufmann, R.M.: Operads, moduli of surfaces and quantum algebras. In: Woods Hole Mathematics. Ser. Knots Everything, vol. 34, pp. 133–224. World Scientific Publishing, Hackensack, NJ (2004)Google Scholar
  27. 27.
    Kaufmann, R.M.: Moduli space actions on the Hochschild co-chains of a Frobenius algebra. I. Cell operads. J. Noncommut. Geom. 1(3), 333–384 (2007)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kaufmann, R.M.: Moduli space actions on the Hochschild co-chains of a Frobenius algebra. II. Correlators. J. Noncommut. Geom. 2(3), 283–332 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Kaufmann, R.M.: Dimension vs. genus: a surface realization of the little k-cubes and an E operad. In: Algebraic Topology—Old and New. Banach Center Publications, vol. 85, pp. 241–274. Polish Academy of Sciences, Institute of Mathematics, Warsaw (2009)Google Scholar
  30. 30.
    Kaufmann, R., Lucas, J.: Decorated Feynman categories. J. Noncommut. Geom. 11(4), 1437–1464 (2017)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Kaufmann, R.M., Penner, R.C.: Closed/open string diagrammatics. Nuclear Phys. B 748(3), 335–379 (2006)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Kaufmann, R.M., Schwell, R.: Associahedra, cyclohedra and a topological solution to the A Deligne conjecture. Adv. Math. 223(6), 2166–2199 (2010)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Kaufmann, R.M., Ward, B.C.: Feynman categories. Astérisque 387, x+161 pp. (2017)Google Scholar
  34. 34.
    Kaufmann, R.M., Livernet, M., Penner, R.C.: Arc operads and arc algebras. Geom. Topol. 7, 511–568 (electronic) (2003)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Kaufmann, R.M., Ward, B.C., Javier Zúñiga, J.: The odd origin of Gerstenhaber brackets, Batalin-Vilkovisky operators, and master equations. J. Math. Phys. 56(10), 103504, 40 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Kimura, T., Stasheff, J., Voronov, A.A.: On operad structures of moduli spaces and string theory. Commun. Math. Phys. 171(1), 1–25 (1995)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Kontsevich, M.: Formal (non)commutative symplectic geometry. In: The Gel’fand Mathematical Seminars, 1990–1992, pp. 173–187. Birkhäuser, Boston, MA (1993)CrossRefGoogle Scholar
  38. 38.
    Leroux, P.: Les catégories de Möbius. Cahiers Topologie Géom. Différentielle 16(3), 280–282 (1975)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, 2nd edn., vol. 5. Springer, New York (1998)Google Scholar
  40. 40.
    Manin, Y.I.: Frobenius manifolds, quantum cohomology, and moduli spaces. American Mathematical Society Colloquium Publications, vol. 47. American Mathematical Society, Providence, RI (1999)Google Scholar
  41. 41.
    Markl, M.: Operads and PROPs. In: Handbook of Algebra, vol. 5, pp. 87–140. Elsevier/North-Holland, Amsterdam (2008)Google Scholar
  42. 42.
    Markl, M.: Modular envelopes, OSFT and nonsymmetric (non-σ) modular operads (2014). arXiv:1410.3414Google Scholar
  43. 43.
    Markl, M., Shnider, S., Stasheff, J.: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, vol. 96. American Mathematical Society, Providence, RI (2002)Google Scholar
  44. 44.
    Markl, M., Merkulov, S., Shadrin, S.: Wheeled PROPs, graph complexes and the master equation. J. Pure Appl. Algebra 213(4), 496–535 (2009)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Merkulov, S., Vallette, B.: Deformation theory of representations of prop(erad)s. I. J. Reine Angew. Math. 634, 51–106 (2009)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Munkres, J.R.: Topology: A First Course. Prentice-Hall, Englewood Cliffs, NJ (1975)zbMATHGoogle Scholar
  47. 47.
    Schwarz, A.: Grassmannian and string theory. Commun. Math. Phys. 199(1), 1–24 (1998)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Sen, A., Zwiebach, B.: Quantum background independence of closed-string field theory. Nucl. Phys. B 423(2–3), 580–630 (1994)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Vallette, B.: A Koszul duality for PROPs. Trans. Am. Math. Soc. 359(10), 4865–4943 (2007)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Ward, B.C.: Six operations formalism for generalized operads. Preprint. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations