Skip to main content

Counting Belyi Pairs over Finite Fields

  • Chapter
  • First Online:

Part of the book series: MATRIX Book Series ((MXBS,volume 1))

Abstract

Alexander Grothendieck’s theory of dessins d’enfants relates Belyi pairs over \(\overline {\mathbb {Q}}\) with certain graphs on compact oriented surfaces; the present paper is aimed at the extension of this correspondence. We introduce two closely related categories of Belyi pairs over arbitrary algebraically closed fields, in particular over the algebraic closures \(\overline {\mathbb {F}_p}\) of finite fields. The lack of the analogs of graphs on surfaces over \(\overline {\mathbb {F}_p}\) promotes the development of other tools that are introduced and discussed. The problem of counting Belyi pairs of bounded complexity is posed and illustrated by some examples; the application of powerful methods of counting dessins d’enfants together with the concept of bad primes is emphasized. The relations with geometry of the moduli spaces of curves is briefly mentioned.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belyi, G.V.: Galois extensions of a maximal cyclotomic fields. Math. USSR Izv. 14(2), 247–256 (1980)

    Article  Google Scholar 

  2. Belyi, G.V.: A new proof of the three-point theorem. Mat. Sb. 193(3), 21–24 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bergstrom J., Tommasi O.: The rational cohomology of \(\mathcal {M}_4\). Math. Ann. 338(1), 207–239 (2007)

    Article  MathSciNet  Google Scholar 

  4. Couveignes, J.-M.: Calcul et rationalité de fonctions de Belyi en genre 0. Annales de l’inst. Fourier 44(1), 1–38 (1994)

    Article  Google Scholar 

  5. Do, N., Norbury, P.: Pruned Hurwitz numbers (2013). arXiv:1312.7516 [math.GT]

    Google Scholar 

  6. Dunin-Barkowski, P., Popolitov, A., Shabat, G., Sleptsov, A.: On the homology of certain smooth covers of moduli spaces of algebraic curves. Differ. Geom. Appl. 40, 86–102 (2015)

    Article  MathSciNet  Google Scholar 

  7. Elkies, N.D.: The Klein quartic in number theory. In: The Eightfold Way: The Beauty of Klein’s Quartic Curve, pp. 51–102. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  8. Filimonenkov, V.O., Shabat, G.B.: Fields of definition of rational functions of one variable with three critical values. Fundam. Prikl. Mat. 1(3), 781–799 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Frenkel, E.: Lectures on the Langlands Program and Conformal Field Theory. In: Cartier, P., Moussa, P., Julia, B., Vanhove, P. (eds.) Frontiers in Number Theory, Physics, and Geometry II. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  10. Gannon, T.: Moonshine Beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  11. Girondo, E., Gonzalez-Diez, G.: Introduction to Compact Riemann Surfaces and Dessins d’Enfants. London Mathematical Society Student Texts. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  12. Goldring, W.: Unifying themes suggested by Belyi’s theorem. In: Number Theory, Analysis and Geometry (Serge Lang Memorial Volume), pp. 181–214. Springer, Boston, MA (2011)

    Google Scholar 

  13. Grothendieck, A.: Esquisse d’un Programme. Unpublished manuscript (1984). English translation by Lochak, P., Schneps, L. in Geometric Galois actions, vol. 1. London Mathematical Society Lecture Note Series, vol. 242, pp. 5–48. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  14. Javanpeykar, A., Bruin, P.: Polynomial bounds for Arakelov invariants of Belyi curves. Algebr. Number Theory 8(1), 89–140 (2014)

    Article  MathSciNet  Google Scholar 

  15. Jones, G., Singerman D.: Maps, hypermaps and triangle groups. In: The Grothendieck Theory of Dessins d’Enfant. London Mathematical Society Lecture Note Series, vol. 200, pp.115–146. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  16. Kazarian, M., Zograf, P.: Virasoro constraints and topological recursion for Grothendieck’s dessin counting. Lett. Math. Phys. 105(8), 1057–1084 (2015)

    Article  MathSciNet  Google Scholar 

  17. Lando, S., Zvonkin, A.: Graphs on Surfaces and Their Applications. Springer, Berlin, Heidelberg (2004)

    Book  Google Scholar 

  18. Mulase, M., Penkava, M.: Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over \(\overline {\mathbb {Q}}\). Asian J. Math. 2(4), 875–920 (1998)

    Google Scholar 

  19. Norbury, P.: Counting lattice points in the moduli space of curves. Math. Res. Lett. 17, 467–481 (2010)

    Article  MathSciNet  Google Scholar 

  20. Oganesyan, D.: Zolotarev polynomials and reduction of Shabat polynomials into a positive characteristic. Mosc. Univ. Math. Bull. 71(6), 248–252 (2016)

    Article  MathSciNet  Google Scholar 

  21. Oganesyan, D.: Abel pairs and modular curves. Zap. Nauchn. Sem. POMI 446, 165–181 (2016)

    MathSciNet  Google Scholar 

  22. Shabat, G.: Combinatorial-topological methods in the theory of algebraic curves. Theses, Lomonosov Moscow State University (1998)

    Google Scholar 

  23. Shabat, G.B.: Unicellular four-edged toric dessins. Fundamentalnaya i prikladnaya matematika 18(6), 209–222 (2013)

    MATH  Google Scholar 

  24. Shabat, G.B., Voevodsky, V.A.: Drawing curves over number fields. In: Cartier, P., Illusie, L., Katz, N., Laumon, G., Manin, Y., Ribet, K. (eds.) The Grothendieck Festschrift, vol. 3, 5th edn., pp. 199–227. Birkhauser, Basel (1990)

    Chapter  Google Scholar 

  25. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 106, 2nd edn. Springer, New York (2009)

    Book  Google Scholar 

  26. Stoilow, S.: Leçons sur les Principes Topologiques de la Théorie des Fonctions Analytiques. Gauthier-Villars, Paris (1956)

    MATH  Google Scholar 

  27. Vashevnik, A.M.: Prime numbers of bad reduction for dessins of genus 0. J. Math. Sci. 142(2), 1883–1894 (2007)

    Article  MathSciNet  Google Scholar 

  28. Weber, M.: Kepler’s small stellated dodecahedron as a Riemann surface. Pac. J. Math. 220, 167–182 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The paper is supported in part by the Simons foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Shabat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shabat, G. (2018). Counting Belyi Pairs over Finite Fields. In: de Gier, J., Praeger, C., Tao, T. (eds) 2016 MATRIX Annals. MATRIX Book Series, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-72299-3_16

Download citation

Publish with us

Policies and ethics