A Simple Model of 4d-TQFT

  • Rinat KashaevEmail author
Part of the MATRIX Book Series book series (MXBS, volume 1)


We show that, associated with any complex root of unity ω, there exists a particularly simple 4d-TQFT model defined on the cobordism category of ordered triangulations of oriented 4-manifolds.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported in part by the Swiss National Science Foundation.


  1. 1.
    Atiyah, M.: Topological quantum field theories. Inst. Hautes Études Sci. Publ. Math. 68, 175–186 (1988/1989). MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bazhanov, V.V., Baxter, R.J.: New solvable lattice models in three dimensions. J. Stat. Phys. 69(3–4), 453–485 (1992). MathSciNetCrossRefGoogle Scholar
  3. 3.
    Biedenharn, L.C.: An identity by the Racah coefficients. J. Math. Phys. 31, 287–293 (1953)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Carter, J.S., Kauffman, L.H., Saito, M.: Structures and diagrammatics of four-dimensional topological lattice field theories. Adv. Math. 146(1), 39–100 (1999). MathSciNetCrossRefGoogle Scholar
  5. 5.
    Crane, L., Frenkel, I.B.: Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. J. Math. Phys. 35(10), 5136–5154 (1994). Topology and physicsMathSciNetCrossRefGoogle Scholar
  6. 6.
    Crane, L., Yetter, D.: A categorical construction of 4D topological quantum field theories. In: Quantum Topology. Knots Everything, vol. 3, pp. 120–130. World Scientific Publications, River Edge, NJ (1993). Google Scholar
  7. 7.
    Elliott, J.P.: Theoretical studies in nuclear structure. V. The matrix elements of non-central forces with an application to the 2p-shell. Proc. R. Soc. Lond. Ser. A 218, 345–370 (1953). Google Scholar
  8. 8.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  9. 9.
    Kashaev, R.: A simple model of 4d-TQFT (2014). arXiv:1405.5763Google Scholar
  10. 10.
    Kashaev, R.M.: On realizations of Pachner moves in 4d. J. Knot Theory Ramif. 24(13), 1541002, 13 (2015). MathSciNetCrossRefGoogle Scholar
  11. 11.
    Korepanov, I.G.: Euclidean 4-simplices and invariants of four-dimensional manifolds. I. Surgeries 3 → 3. Teor. Mat. Fiz. 131(3), 377–388 (2002).
  12. 12.
    Korepanov, I.G., Sadykov, N.M.: Parameterizing the simplest Grassmann-Gaussian relations for Pachner move 3–3. Symmetry Integr. Geom. Methods Appl. 9, Paper 053, 19 (2013)Google Scholar
  13. 13.
    Lickorish, W.B.R.: Simplicial moves on complexes and manifolds. In: Proceedings of the Kirbyfest (Berkeley, CA, 1998). Geometry & Topology Monographs, vol. 2, pp. 299–320. Geometry & Topology Publications, Coventry (1999) (electronic).
  14. 14.
    Oeckl, R.: Discrete Gauge Theory. Imperial College Press, London (2005). From lattices to TQFT
  15. 15.
    Pachner, U.: PL homeomorphic manifolds are equivalent by elementary shellings. Eur. J. Comb. 12(2), 129–145 (1991).
  16. 16.
    Ponzano, G., Regge, T.: Semiclassical limit of Racah coefficients. In: Spectroscopic and group theoretical methods in physics, pp. 1–58. North-Holland, Amsterdam (1968)Google Scholar
  17. 17.
    Turaev, V.G.: Quantum Invariants of Knots and 3-Manifolds. de Gruyter Studies in Mathematics, vol. 18. Walter de Gruyter, Berlin (1994)Google Scholar
  18. 18.
    Turaev, V.G., Viro, O.Y.: State sum invariants of 3-manifolds and quantum 6j-symbols. Topology 31(4), 865–902 (1992). MathSciNetCrossRefGoogle Scholar
  19. 19.
    Walker, K.: On Witten’s 3-manifold invariants (1991). PreprintGoogle Scholar
  20. 20.
    Witten, E.: Topological quantum field theory. Commun. Math. Phys. 117(3), 353–386 (1988). MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Section de MathématiquesUniversité de GenèveGenève 4Switzerland

Personalised recommendations