Skip to main content

A Signed Version of Putnam’s Homology Theory: Lefschetz and Zeta Functions

  • 776 Accesses

Part of the MATRIX Book Series book series (MXBS,volume 1)

Abstract

A signed version of Putnam homology for Smale spaces is introduced. Its definition, basic properties and associated Lefschetz theorem are outlined. In particular, zeta functions associated to an Axiom A diffeomorphism are compared.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-72299-3_13
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-72299-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowen, R.: Entropy versus homology for certain diffeomorphism. In: Topology, vol. 13, pp. 61–67. Pergamon, Oxford (1974)

    MathSciNet  CrossRef  Google Scholar 

  2. Bowen, R., Franks, J.: Homology for zero-dimensional nonwandering sets. Ann. Math. (2) 106(1), 73–92 (1977)

    MathSciNet  CrossRef  Google Scholar 

  3. Deeley, R.J., Killough, D.B., Whittaker, M.F.: Dynamical correspondences for Smale spaces. N. Y. J. Math. 22, 943–988 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Deeley, R.J., Killough, D.B., Whittaker, M.F.: Functorial properties of Putnam’s homology theory for Smale spaces. Ergod. Theory Dyn. Syst. 36(5), 1411–1440 (2016)

    MathSciNet  CrossRef  Google Scholar 

  5. Franks, J.: Homology Theory and Dynamical Systems. CBMS Regional Conference Series in Mathematics, vol. 49, viii+120 pp. American Mathematical Society, Providence, RI (1982)

    Google Scholar 

  6. Manning, A.: Axiom A diffeomorphisms have rational zeta functions. Bull. Lond. Math. Soc. 3, 215–220 (1971)

    MathSciNet  CrossRef  Google Scholar 

  7. Putnam, I.F.: A homology theory for Smale spaces. Mem. Am. Math. Soc. 232(1094), viii+122 pp. (2014)

    Google Scholar 

  8. Ruelle, D.: Thermodynamic Formalism. Encyclopedia of Mathematics and Its Applications, vol. 5, xix+183 pp. Addison-Wesley, Reading, MA (1978)

    Google Scholar 

  9. Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)

    MathSciNet  CrossRef  Google Scholar 

Download references

Acknowledgements

I thank Magnus Goffeng, Ian Putnam and Robert Yuncken for discussions. In addition, I thank Magnus for encouraging me to publish these results. I also thank the referee for a number of useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin J. Deeley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Deeley, R.J. (2018). A Signed Version of Putnam’s Homology Theory: Lefschetz and Zeta Functions. In: de Gier, J., Praeger, C., Tao, T. (eds) 2016 MATRIX Annals. MATRIX Book Series, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-72299-3_13

Download citation