Mass and Energy Balances for Systems with Nanoparticles

  • Seyed Ali Ashrafizadeh
  • Zhongchao Tan
Part of the Mechanical Engineering Series book series (MES)


Nanotechnology is the fifth technology revolution, after steam engine in the late 1700s; steel, electricity, and railways in the late 1800s; cars, chemicals, and mass production in the early 1900s; computers in the mid-1900s. The ideas behind nanotechnology started with the talk entitled “There’s Plenty of Room at the Bottom” by Richard Feynman at the California Institute of Technology in 1959.

References and Further Readings

  1. 1.
    Aglioa MD, Gaudiusoa R, Pascalea OD, Giacomoa AD (2015) Mechanisms and processes of pulsed laser ablation in liquids during nanoparticle production. Appl Surf Sci 348:4–9CrossRefGoogle Scholar
  2. 2.
    Aleksandr I, Khinchin A (1949) Mathematical Foundations of Statistical Mechanics. Courier Corporation, KhinchinGoogle Scholar
  3. 3.
    Alivisatos P (1996) Semiconductor clusters, nanocrystals and quantum dots. Science 271:933–937CrossRefGoogle Scholar
  4. 4.
    Singh AK (2015) Engineered Nanoparticles: Structure. Academic Press, Properties and Mechanisms of ToxicityGoogle Scholar
  5. 5.
    Ashrafizadeh SA, Amidpour M (2012) Exergy analysis of humidification– dehumidification desalination systems using driving forces concept. Desalination 285:108–116CrossRefGoogle Scholar
  6. 6.
    Ashrafizadeh SA, Amidpour M, Abolmashadi M (2013) Exergy analysis of distillation column using driving forces concept. J Chem Eng Jpn 46(7):434–443CrossRefGoogle Scholar
  7. 7.
    Ashrafizadeh SA, Amidpour M, Allahverdi A (2011) Green house gases emission reduction in cement production process by driving force distribution. Int Geoinformatics Res Dev Journal 2(3):1–10Google Scholar
  8. 8.
    Ashrafizadeh SA, Amidpour M, Allahverdi A (2012) Exergetic and environmental performance improvement in cement production process by driving force distribution. Korean J Chem Eng 29(5):606–613CrossRefGoogle Scholar
  9. 9.
    Babuk VA, Zelikov AD, Salimullin RM (2013) Nanothermodynamics as a tool to describe small objects of nature. Tech Phys 58(2):151–157CrossRefGoogle Scholar
  10. 10.
    Beilby GT (1903) The effects of heat and of solvents on thin films of metal. Proceedings Royal Soc A 72(477–486):226–235. 116470CrossRefGoogle Scholar
  11. 11.
    Bejan A (2006) Advanced Engineering Thermodynamics. Wiley, New YorkGoogle Scholar
  12. 12.
    Birbilis N, Cavanaugh MK, Kovarik L, Buchheit RG (2007) Nanoscale dissolution phenomena in Al−Cu−Mg alloys. Electrochem Commun 10:32–37CrossRefGoogle Scholar
  13. 13.
    Bomatí MO, Mazeina L, Navrotsky A, Veintemillas VS (2008) Study of maghemite nanoparticles synthesized by laser-induced pyrolysis. Chem Mater 20(2):591–598CrossRefGoogle Scholar
  14. 14.
    Bosnjakovic F (1965) Technical thermodynamics. Holt, Rinehart & Winston, New YorkGoogle Scholar
  15. 15.
    Carrete J, Varela LM, Gallego LJ (2008) Nonequilibrium nanothermodynamics. Phys Rev E 77(2):022102CrossRefGoogle Scholar
  16. 16.
    Chamberlin RV (2000) Mean-field cluster model for the critical behavior of ferromagnets. Nature 408(6810):337–339CrossRefGoogle Scholar
  17. 17.
    Chamberlin RV (2003) Critical behavior from Landau theory in nanothermodynamic equilibrium. Phys Lett A 315:313–318zbMATHCrossRefGoogle Scholar
  18. 18.
    Chamberlin RV (2015) The big world of nanothermodynamics. Entropy 17:52–73CrossRefGoogle Scholar
  19. 19.
    Chen Q, Sundman B (2001) Calculation of Debye temperature for crystalline structures—a case study on Ti, Zr, and Hf. Acta Mater 49(6):947–961CrossRefGoogle Scholar
  20. 20.
    Cui ZX, Zhao MZ, Lai WP, Xue YQ (2011) Thermodynamics of size effect on phase transition temperatures of dispersed phases. J Phys Chem 115:22796–22803Google Scholar
  21. 21.
    De Hoff RT (2006) Thermodynamics in Material Science, 2nd edn, Taylor & Francis, Boca RatonGoogle Scholar
  22. 22.
    DellʼAglio M, Gaudiuso R, De Pascale O, De Giacomo A (2015) Mechanisms and processes of pulsed laser ablation in liquids during nanoparticle production. Appl Surf Sci 348:4–9CrossRefGoogle Scholar
  23. 23.
    Delogu F (2005) Thermodynamics on the nanoscale. J Phys Chem B 109:21938–21941CrossRefGoogle Scholar
  24. 24.
    Dincer I, Rosen MA (2007) Exergy hand book, energy, environment and sustainable development. Elsevier, OxfordGoogle Scholar
  25. 25.
    Dixit PD (2013) A maximum entropy thermodynamics of small systems. J Chem Phys 138(18):05B612–05B611CrossRefGoogle Scholar
  26. 26.
    Du JP, Zhao RH, Xue YQ (2012) Thermodynamic properties and equilibrium constant of chemical reaction in nanosystem: a theoretical and experimental study. J Chem Thermodyn 55:218–224CrossRefGoogle Scholar
  27. 27.
    Esker AR, Mengel C, Wegner G (1998) Ultrathin films of a polyelectrolyte with layered architecture. Science 280(5365):892–895CrossRefGoogle Scholar
  28. 28.
    Fan G, Huang Z, Wang T (2013) Size effect on thermodynamic properties of CaMoO4 micro/nano materials and reaction systems. Solid State Sci 16:121–124CrossRefGoogle Scholar
  29. 29.
    Faraday M (1857) Experimental relations of gold (and other metals) to light. Phil Trans R Soc London 147:145–181. CrossRefGoogle Scholar
  30. 30.
    Forbes TZ, Radha AV, Navrotsky A (2011) The energetics of nanophase calcite. Geochim Cosmochim Acta 75:7893–7905CrossRefGoogle Scholar
  31. 31.
    Gao Y, Bando Y (2002) Nanothermodynamic analysis of surface effect on expansion characteristics of Ga in carbon nanotubes. Appl Phys Lett 81(21):3966–3968CrossRefGoogle Scholar
  32. 32.
    Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105:1171–1196CrossRefGoogle Scholar
  33. 33.
    Givehchi R, Li Q, Tan Z (2015) The effect of electrostatic forces on filtration efficiency of granular filters. Powder Technol 277:135–140CrossRefGoogle Scholar
  34. 34.
    Givehchi R, Tan Z (2015) The Effect of capillary force on airborne nanoparticle filtration. J Aerosol. Science 83:12–24Google Scholar
  35. 35.
    Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33(4):223–315CrossRefGoogle Scholar
  36. 36.
    Hayun S, Tran T, Ushakov SV, Thron AM, Van Benthem K, Navrotsky A, Castro RH (2011) Experimental methodologies for assessing the surface energy of highly hygroscopic materials: The case of nanocrystalline magnesia. J Phys Chem C 115(48):23929–23935CrossRefGoogle Scholar
  37. 37.
    Hiemstra T (2015) Formation, stability, and solubility of metal oxide nanoparticles: Surface entropy, enthalpy, and free energy of ferrihydrite. Geochim Cosmochim Acta 158:179–198CrossRefGoogle Scholar
  38. 38.
    Hill TL (1986) An Introduction to Statistical Thermodynamics. Dover, New YorkGoogle Scholar
  39. 39.
    Hill TL (1961) Thermodynamics of Small Systems. J Chem Phys 36:3182–3197CrossRefGoogle Scholar
  40. 40.
    Hill TL (2001) A Different approach to nanothermodynamics. Nano Lett 1(5):273–275CrossRefGoogle Scholar
  41. 41.
    Hill TL (2001) Extension of Nanothermodynamics to Include a One-Dimensional Surface Excess. Nano Lett 1(3):159–160CrossRefGoogle Scholar
  42. 42.
    Hill TL (2001) Perspective: Nanothermodynamics. Nano Lett 1(3):111–112CrossRefGoogle Scholar
  43. 43.
    Hill TL (2013) Thermodynamics of Small Systems. Parts I & II. Dover Publications, MineolaGoogle Scholar
  44. 44.
    Hill TL, Chamberlin RV (1998) Extension of the thermodynamics of small systems to open metastable states: an example. Physics 95:12779–12782Google Scholar
  45. 45.
    Hill TL, Chamberlin RV (2002) Fluctuations in energy in completely open small systems. Nano Lett 2(6):609–613CrossRefGoogle Scholar
  46. 46.
    Hosokawa M, Nogi K, Naito M, Yokoyama T (2012) Nanoparticle Technology Handbook, 2nd edn. Elsevier, PhiladelphiaGoogle Scholar
  47. 47.
    Huang ZY, Li XX, Liu ZJ, He LM, Tan XC (2015) Morphology effect on the kinetic parameters and surface thermodynamic properties of Ag3PO4 micro/nanocrystals. J Nanomater 16(1):388Google Scholar
  48. 48.
    Jia M, Lai Y, Tian Z, Liu Y (2008) Calculation of the surface free energy of fcc copper nanoparticles. Model Simul Mater Sci Eng 17(1):015006CrossRefGoogle Scholar
  49. 49.
    Khan FA (2012) Biotechnology Fundamentals. CRC Press, p. 328. ISBN 9781439820094. Retrieved 6 Dec 2016Google Scholar
  50. 50.
    Kittel C (2004) Introduction to Solid State Physics, 8th edn. John Wiley and Sons, USAzbMATHGoogle Scholar
  51. 51.
    Korbekandia H, Asharia Z, Iravanib S, Abbasi S (2013) Optimization of biological synthesis of silver nanoparticles using fusarium oxysporum. Iranian J Pharm Res 12(3):289–298Google Scholar
  52. 52.
    Kotas TJ (1995) The exergy method of thermal plant analysis. Krieger Publishing Company, Malabar, FloridaGoogle Scholar
  53. 53.
    Lazarus LL, Riche CT, Marin BC, Gupta M, Malmstadt N, Brutchey RL (2012) Two-phase microfluidic droplet flows of ionic liquids for the synthesis of gold and silver nanoparticles. ACS Appl.Mater.Interfaces 4:3077–3083CrossRefGoogle Scholar
  54. 54.
    Letellier P, Mayaffre A, Turmine M (2007) Solubility of nanoparticles: nonextensive thermodynamics approach. J Phys: Condensed Matter 19(43):436229Google Scholar
  55. 55.
    Levdanskii VV, Smolik J, Zdimal V, Moravec P (2013) Influence of size effects on chemical reactions inside a nanoparticle and on its surface. J Eng Phys Thermophys 86:863–867CrossRefGoogle Scholar
  56. 56.
    Li XX, Tang HF, Lu XR, Lin S, Shi LL, Huang ZY (2015) Reaction kinetic parameters and surface thermodynamic properties of Cu2O nanocubes. Entropy 17:5437–5449CrossRefGoogle Scholar
  57. 57.
    Li ZH, Truhlar DG (2014) Nanothermodynamics of metal nanoparticles. Chem Sci 5(7):2605–2624CrossRefGoogle Scholar
  58. 58.
    Lubej A, Koloini T, Pohar C (1997) Solubility of copper(2) oxychloride. Ind Eng Chem Res 36:241–245CrossRefGoogle Scholar
  59. 59.
    Lucia U (2014) The gouy-stodola theorem in bio-energetic analysis of living systems (Irreversibility in bioenergetics of living systems). Energies 7(9):5717–5739CrossRefGoogle Scholar
  60. 60.
    Majerič P, Rudolf R, Anžel I (2014) Thermodynamics of nanoparticles. Anali pazu 4:28–33Google Scholar
  61. 61.
    Mansoori GA (2002) Advances in Atomic & Molecular Nanotechnology. UN-APCTT Tech Monitor, Special Issue Sep-Oct, pp 53–59Google Scholar
  62. 62.
    Martin TP (1996) Shells of atoms. Phys Ther 273:199–241Google Scholar
  63. 63.
    Martin TP, Bergmann T, Goehlich H, Lange T (1991) Shell structure of clusters. J Phys Chem 95:6421–6429CrossRefGoogle Scholar
  64. 64.
    Mason BP, Price KE, Steinbacher JL, Bogdan AR, McQuade DT (2007) Greener approaches to organic synthesis using micro reactor technology. ChemRev 107:2300–2318Google Scholar
  65. 65.
    Miedema AR (1978) Surface energies of solid metals. Z Met 69(5):287–292Google Scholar
  66. 66.
    Mohazzabi P, Mansoori GA (2006) Why nanosystems and macroscopic systems behave differently. Int. J. Nanosci Nanotechnol 1:46–53Google Scholar
  67. 67.
    Morales VG, Cervera J, Pellicer J (2005) Correct thermodynamic forces in Tsallis thermodynamics: connection with Hill nanothermodynamics. Phys Lett A 336:82–88zbMATHCrossRefGoogle Scholar
  68. 68.
    Nanda KK, Maisels A, Kruis FE, Fissan H, Stappert S (2003) Higher surface energy of free nanoparticles. Phys Rev Lett 91:106–102CrossRefGoogle Scholar
  69. 69.
    Okubo M, Hosono E, Kudo T, Zhou HS, Honma I (2009) Size effect on electrochemical property of nanocrystalline LiCoO2 synthesized from rapid thermal annealing method. Solid State Ionics 180:612–615CrossRefGoogle Scholar
  70. 70.
    Olshanii M (2015) Geometry of Quantum Observables and Thermodynamics of Small Systems. Physical review letters 114(6):060401CrossRefGoogle Scholar
  71. 71.
    Overney R (2010) Nanothermodynamics and nanoparticle Synthesis. presentation in University of WashingtonGoogle Scholar
  72. 72.
    Pan R, Nair M, Wunderlich B (1989) On the Cp to Cv conversion of solid linear macromolecules II. J Therm Anal Calorim 35(3):955–966CrossRefGoogle Scholar
  73. 73.
    Pellegrino J, Schulte LR, De la Cruz J, Stoldt C (2017) Membrane processes in nanoparticle production. J Membr Sci 522:245–256CrossRefGoogle Scholar
  74. 74.
    Perrot P (1998) A to Z of thermodynamics. Oxford University Press. ISBN 0-19-856552-6
  75. 75.
    Qian H (2012) Hill’s small systems nanothermodynamics: a simple macromolecular partition problem with a statistical perspective. Biol Phys 38:201–207CrossRefGoogle Scholar
  76. 76.
    Rant Z (1956) Exergie, ein neues Wort für ‘technische arbeitsfähigkeit’. (Exergy, a New Word for Technical Available Work). Forschungen im Ingenieurwesen 22:36–37Google Scholar
  77. 77.
    Reiss G, Hutten A (2010) Magnetic Nanoparticles. In Sattler, Klaus D. Handbook of Nanophysics: nanoparticles and quantum dots. CRC Press. pp. 2–1. ISBN 9781420075458. Retrieved 6 Dec 2016Google Scholar
  78. 78.
    Riabinina D, Chaker M, Margot J (2012) Dependence of gold nanoparticle production on pulse duration by laser ablation in liquid media. Nanotechnology 23(13):5603CrossRefGoogle Scholar
  79. 79.
    Rocha M, Chaves N, Bao S (2017) Nanobiotechnology for breast cancer treatment. Pham PV, Breast cancer- from biology to medicine. INTECH, In. CrossRefGoogle Scholar
  80. 80.
    Ruelle DP (2003) Extending the definition of entropy to nonequilibrium steady states. Proc Natl Acad Sci 100(6):3054–3058MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Rupp J, Birringer R (1987) Enhanced specific-heat-capacity (cp) measurements (150–300 K) of nanometer-sized crystalline materials. Phys Rev B 36(15):7888CrossRefGoogle Scholar
  82. 82.
    Rusanov AI (2005) Surface thermodynamics revisited. Surf Sci Rep 58:111–239CrossRefGoogle Scholar
  83. 83.
    Saidur R, Leong KY, Mohammad HA (2011) A review on applications and challenges of nanofluids. Renew Sust Energ Rev 15(3):1646–1668CrossRefGoogle Scholar
  84. 84.
    Salis M, Carbonaro CM, Marceddu M, Ricci PC (2013) Statistical thermodynamics of Schottky defects in metal nanoparticles. Nanosci Nanotechnol 3(2):27–33Google Scholar
  85. 85.
    Sanjeeb KS, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8(24):1112–1120CrossRefGoogle Scholar
  86. 86.
    Serrin J (1979) Conceptual analysis of the classical second laws of thermodynamics. Arch Ration Mech Anal 70(4):355–371MathSciNetCrossRefGoogle Scholar
  87. 87.
    Shibata T, Bunker BA, Zhang ZY, Meisel D, Vardeman CF, Gezelter JD (2002) Size-dependent spontaneous alloying of Au−Ag nanoparticles. J Am Chem Soc 124:11989–11996CrossRefGoogle Scholar
  88. 88.
    Simiari M, Roozehdar Mogaddam R, Ghaebi M, Farshid E, Zomorrodian ME (2016) Assessment of nanothermodynamic properties of ferromagnetic nanocluster in subdivision potential approach and magnetic field. J Appl Mathematics Physics 4:2233–2246CrossRefGoogle Scholar
  89. 89.
    Smith JM, Van Ness HC (1987) Introduction to chemical engineering thermodynamics, 4th edn. McGraw-Hill, USAGoogle Scholar
  90. 90.
    Sonntag RE, Borgnakke C, Van Wylen GJ (2002) Fundamentals of thermodynamics, 6th edn. Wiley, USAGoogle Scholar
  91. 91.
    Stark JV, Klabunde KJ (1996) Nanoscale metal oxide particles/clusters as chemical reagents Adsorption of hydrogen halides, nitric oxide, and sulfur trioxide on magnesium oxide nanocrystals and compared with microcrystals. Chem Mater 8:1913–1918CrossRefGoogle Scholar
  92. 92.
    Sun CQ (2007) Size dependence of nanostructures: impact of bond order deficiency. Prog Solid State Chem 35(1):1–159CrossRefGoogle Scholar
  93. 93.
    Sun J, Wang F, Sui Y, She ZN, Zhai WJ, Wang CL, Deng YH (2012) Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q10 as naked nanocrystals. Int J Nano med 7:5733–5744Google Scholar
  94. 94.
    Szargut J, Morris DR, Steward FR (1988) Exergy Analysis of thermal chemical and metallurgical processes. Hemisphere Publishing Corporation, New York, LondonGoogle Scholar
  95. 95.
    Tan Z (2014) Air Pollution and greenhouse gases. Springer Verlag, SingaporeCrossRefGoogle Scholar
  96. 96.
    Thiele M, Knauer A, Csaki A, Mallsch D, Henkel T, Kohler JM, Fritzsche W (2015) High-throughput synthesis of uniform silver seed particles by a continuous microfluidic synthesis platform. ChemEngTechnol 38:1131–1137Google Scholar
  97. 97.
    Tong WP, Tao NR, Wang ZB, Lu K (2003) Nitriding iron at lower temperatures. Science 299:686–688CrossRefGoogle Scholar
  98. 98.
    Turner T (1908) Transparent silver and other metallic films. Proceedings Royal Soc A 81(548):301–310CrossRefGoogle Scholar
  99. 99.
    Twibanire KJ, Grindley TB (2012) Polyester dendrimers. Polymer 4(1):794–879CrossRefGoogle Scholar
  100. 100.
    Umberto L (2015) A Link between nano- and classical thermodynamics: dissipation analysis (The entropy generation approach in nano-thermodynamics). Entropy 17:1309–1328CrossRefGoogle Scholar
  101. 101.
    Vakili-Nezhaad GR (2004) Euler’s homogenous functions can describe non-extensive thermodynamic systems. Int J Pure & Appl. Math Sci 1:7–8zbMATHGoogle Scholar
  102. 102.
    Wang L, Travis JJ, Cavanagh AS, Liu X, Koenig SP, Huang PY, George SM, Bunch JS (2012) Ultrathin oxide films by atomic layer deposition on graphene. Nano Lett 12(7):3706–3710CrossRefGoogle Scholar
  103. 103.
    Wei XC, Bhojappa S, Lin LS, Viadero RC (2012) Performance of nano-magnetite for removal of selenium from aqueous solutions. Environ Eng Sci 29:526–532CrossRefGoogle Scholar
  104. 104.
    Wu NL, Wu TF, Rusakova IA (2001) Thermodynamic stability of tetragonal zirconia nano- crystallites. J Mater Res 16:666–669CrossRefGoogle Scholar
  105. 105.
    Xiong S, Qi W, Cheng Y, Huang B, Wang M, Li Y (2011) Universal relation for size dependent thermodynamic properties of metallic nanoparticles. Chem Phys 13:10652–10660Google Scholar
  106. 106.
    Xiong S, Qi W, Cheng Y, Huang B, Wang M, Lia Y (2011) Modeling size effects on the surface free energy of metallic nanoparticles. Chem Phys 13:10648–10651Google Scholar
  107. 107.
    Yang H, Hu Y, Tang A, Jin S, Qiu G (2004) Synthesis of tin oxide nanoparticles by mechanochemical reaction. J Alloys Compd 363(1):276–279CrossRefGoogle Scholar
  108. 108.
    Yang XY, Hu WY, Liu FS, Li Y (2012) Atomistic simulation for the size-dependent melting behaviour of vanadium nanowires. J Phys D Appl Phys 45:485304–485312CrossRefGoogle Scholar
  109. 109.
    Zhang K, Han XP, Hu Z, Zhang XL, Tao ZL, Chen J (2015) Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem Soc Rev 44:699–728CrossRefGoogle Scholar
  110. 110.
    Zhang YX, Wang LQ (2010) Microfluidics: fabrication, droplets, bubble sand nano- fluids synthesis, in: Wang LQ (Ed.), Advances inTransport Phenomena pp 171–294, 2011Google Scholar
  111. 111.
    Zhang Z, Fu Q, Xue Y, Cui Z, Wang S (2016) Theoretical and experimental researches of size-dependent surface thermodynamic properties of nanovaterite. J Phys Chem 120(38):21652–21658Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Seyed Ali Ashrafizadeh
    • 1
  • Zhongchao Tan
    • 1
  1. 1.Department of Mechanical & Mechatronics EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations