Skip to main content

Introduction to Wavefront Science

  • Chapter
  • First Online:
Customized Laser Vision Correction

Abstract

Optical wavefront science is the photophysical description of optical perfection or imperfection. Understanding the principles of optical wavefront is essential for understanding its application, especially in customized laser vision correction (CLVC). The principal of wavefront measurement is the difference (deviation) between the actual wavefront shape of the measured surface and the ideal flat shape. This deviation is known as a wavefront aberration.

There are three types of aberrations: constant, lower order (LOAs) and higher order aberrations (HOAs). The constant aberrations exist in all optical systems. The LOAs are encountered with sphero-cylindrical refractive errors. HOAs are found in irregular optical systems.

Aberrations are measured by corneal and whole-eye wavefront aberrometers. There are three types of aberrometers: outgoing reflective, ingoing reflective and ingoing feedback aberrometers. There are several factors affecting the measurements, such as pupil size, accommodation, age, ocular pathologies and previous ocular surgeries. Aberrations can be measured at the pupillary level or at the retinal level. The root mean square (RMS) is the most common metric to quantify aberrations. There are other metrics that describe aberrations, such as point spread function (PSF), Strehl Ratio (SR), Modulation Transfer Function (MTF), Phase transfer function (PTF), optical transfer function (OTF), Zernike coefficient and Fourier Analysis. The last two are the most commonly used, and each of them has its advantages.

In addition to qualification and quantification of aberrations, there are several clinical applications of wavefront technology. It is applied in the prediction of subjective refraction, detection of forme fruste keratoconus, wavefront optimized and wavefront guided laser ablation profiles, intraocular lens design and presbyopia treatment.

As wavefront technology is applied in treatment, there are preoperative and intraoperative key factors required to achieve the desired results. The preoperative factors are wavefront capture, which must be valid, repeatable, and reproducible, precise manifest refraction, pupillometry, skillful data analysis, laser profile creation and patient counseling. The intraoperative factors are alignment and registration, centration, eye tracking, nomogram adjustment, flap creation and treatment zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hofer H, Artal P, Singer B, et al. Dynamics of the human eye wave aberration. J Opt Soc Am A. 2001;18(3):497–506.

    Article  CAS  Google Scholar 

  2. Jennings JAM, Charman WN. Off-axis image quality in the human eye. Vis Res. 1981;21(4):445–55.

    Article  CAS  PubMed  Google Scholar 

  3. Lombardo M, Lombardo G. Wave aberration of human eyes and new descriptors of image optical quality and visual performance. J Cataract Refract Surg. 2010;36(2):313–31.

    Article  PubMed  Google Scholar 

  4. Artal P, Guirao A. Contributions of the cornea and the lens to the aberrations of the human eye. Opt Lett. 1998;23(21):1713–5.

    Article  CAS  PubMed  Google Scholar 

  5. Artal P, Berrio E, Guirao A, et al. Contribution of the cornea and internal surfaces to the change of ocular aberrations with age. J Opt Soc Am A Opt Image Sci Vis. 2002;19(1):137–43.

    Article  PubMed  Google Scholar 

  6. Atchison D, Collins M, Wildsoet C, et al. Measurement of monochromatic aberrations of human eyes as a function of accommodation by the Howland aberroscope technique. Vis Res. 1995;35(3):313–23.

    Article  CAS  PubMed  Google Scholar 

  7. Atchinson DA, Smith G. Schematic eyes. In: Atchinson DA, Smith G, editors. Optics of the human eye. London: Butterworth-Heinemann; 2000. Appendix 3.6.

    Google Scholar 

  8. Barbero S, Marcos S, Merayo-Lloves JM. Total and corneal aberrations in an unilateral aphakic subject. J Cataract Refract Surg. 2002;28:1594–600.

    Article  PubMed  Google Scholar 

  9. Born M, Wolf E. Principles of optics. 6th ed. Oxford: Pergamon Press; 1993. p. 8.

    Google Scholar 

  10. Castejon-Mochon FJ, Lopez-Gil N, Benito A, et al. Ocular wave-front aberration statistics in a normal young population. Vis Res. 2002;42(13):926–36.

    Google Scholar 

  11. Charman WN, Jennings JAM. Objective measurements of the longitudinal chromatic aberration of the human eye. Vis Res. 1976;16(9):999–1005.

    Article  CAS  PubMed  Google Scholar 

  12. Mahajan VN. Zernike circle polynomials and optical aberrations of systems with circular pupil. Appl Opt. 1994;33(34):8121–4.

    Article  CAS  PubMed  Google Scholar 

  13. Marcos S, Burns SA. On the symmetry between eyes of wavefront aberration and cone directionality. Vis Res. 2000;40(18):2437–47.

    Article  CAS  PubMed  Google Scholar 

  14. Wyant JC. “Zernike Polynomials”. Powered by WebMATHEMATICA. http://wyant.optics.arizona.edu/zernikes/zernikes.htm.

  15. Oliveira CM, Ferreira A, Franco S. Wavefront analysis and Zernike polynomial decomposition for evaluation of corneal optical quality. J Cataract Refract Surg. 2012;38(2):343–56.

    Article  PubMed  Google Scholar 

  16. Charman WN. The optics of the eye. In: Bass M, editor. Handbook of optics. 2nd ed. New York (NY): Mcgraw-Hill; 1995.

    Google Scholar 

  17. Collins MJ, Wildsoet CF, Atchinson DA. Monochromatic aberrations and myopia. Vis Res. 1995;35(9):1157–63.

    Article  CAS  PubMed  Google Scholar 

  18. Guirao A, Artal P. Off-axis monochromatic aberrations estimated from double pass measurements in the human eye. Vis Res. 1999;39(2):207–17.

    Article  CAS  PubMed  Google Scholar 

  19. He JC, Marcos S, Webb RH, et al. Measurement of the wave-front aberration of the eye by a fast psychophysical procedure. J Opt Soc Am A. 1998;15(9):2449–54.

    Article  CAS  Google Scholar 

  20. He JC, Burns SA, Marcos S. Monochromatic aberrations in the accommodated human eye. Vis Res. 2000;40(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  21. Marcos S, Burns SA, Moreno-Barriuso E, et al. A new approach to the study of ocular chromatic aberrations. Vis Res. 1999;39(29):4309–23.

    Article  CAS  PubMed  Google Scholar 

  22. Sinjab MM. Wavefront science. In:Five steps to start your refractive surgery: a case-based systematic approach. New Delhi: Jaypee Brothers Medical Publishers; 2014. p. 49–78.

    Google Scholar 

  23. Gatinel D. Wavefront analysis. In: Azar DT, Gatinel D, Hoang-Xuan T, editors. Refractive surgery. Philadelphia: Mosby Elsevier; 2007. 122, 131, 142.

    Google Scholar 

  24. Mclellan JS, Marcos S, Prieto PM, et al. Imperfect optics may be the eye's defence against chromatic blur. Nature. 2002;17:696–9.

    Google Scholar 

  25. Mclellan J, Marcos S, Burns S. Age related changes in monochromatic wave aberrations in human eyes. Invest Ophalmol Vis Sci. 2001;42(6):1390–5.

    CAS  Google Scholar 

  26. Applegate RA, Thibos LN, Hilmantel G. Optics of aberroscopy and super vision. J Cataract Refract Surg. 2001;27(7):1093–107.

    Article  CAS  PubMed  Google Scholar 

  27. Atchison DA, Scott DH, Charman WN. Measuring ocular aberrations in the peripheral visual field using Hartmann-Shack aberrometry. J Opt Soc Am A Opt Image Sci Vis. 2007;24(9):2963–73.

    Article  PubMed  Google Scholar 

  28. Cerviño A, Hosking SL, Montes-Mico R, et al. Clinical ocular wavefront analyzers. J Refract Surg. 2007;23(6):603–16.

    PubMed  Google Scholar 

  29. Diaz-Douton F, Benito A, Pujol J. Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument. Invest Ophthalmol Vis Sci. 2004;47(4):1710–6.

    Article  Google Scholar 

  30. Molebny VV, Panagopoulou SI, Molebny SV, et al. Principles of ray tracing aberrometry. J Refract Surg. 2000;16(5):S572–5.

    PubMed  CAS  Google Scholar 

  31. Mrochen M, Kaemmerer M, Mierdel P, et al. Principles of Tscherning aberrometry. J Refract Surg. 2000;16(5):S570–1.

    PubMed  CAS  Google Scholar 

  32. Rozema JJ, Van Dyck DE, Tassignon MJ. Clinical comparison of 6 aberrometers. Part 2: statistical comparison in a test group. J Cataract Refract Surg. 2006;32(1):33–44.

    Article  PubMed  Google Scholar 

  33. Thibos LN. Principles of Hartmann-Shack aberrometry. J Refract Surg. 2000;16(5):S563–5.

    PubMed  CAS  Google Scholar 

  34. Warden L, Liu Y, Binder PS, et al. Performance of a new binocular wavefront aberrometer based on a self-imaging diffractive sensor. J Refract Surg. 2008;24(2):188–96.

    PubMed  Google Scholar 

  35. Neville TM. Eye aberrations: overview. In: Pinelli R, editor. Wavefront: a text and atlas. New Delhi: Jaypee Brothers Medical Publishers; 2014. p. 29.

    Google Scholar 

  36. Saiki K, Negishi K, Ohnuma H, et al. Effect of change in higher order aberrations with accommodation on visual function in normal and post–Lasik. Invest Ophthalmol Vis Sci. 2006;47(13):55.

    Google Scholar 

  37. Zhou X-Y, Wang L, Zhou X-T, et al. Wavefront aberration changes caused by a gradient of increasing accommodation stimuli. Eye. 2015;29(1):115–21.

    Article  PubMed  Google Scholar 

  38. Klyce SD, Karon MD, Smolek MK. Advantages and disadvantages of the Zernike expansion for representing wave aberration of the normal and aberrated eye. J Refract Surg. 2004;20(5):S537–41.

    PubMed  Google Scholar 

  39. Buhren J, Kuhne C, Kohnen T. Defining subclinical keratoconus using corneal first-surface higher-order aberrations. Am J Ophthalmol. 2007;143(3):381–9.

    Article  PubMed  Google Scholar 

  40. Buhren J, Kuhne C, Kohnen T. Wavefront analysis for the diagnosis of subclinical keratoconus (in German). Ophthalmologe. 2006;103:783–90.

    Article  CAS  PubMed  Google Scholar 

  41. Gobbe M, Guillon M. Corneal wavefront aberration measurements to detect keratoconus patients. Cont Lens Anterior Eye. 2005;28(2):57–66.

    Article  PubMed  Google Scholar 

  42. Saad A, Gatinel D. Evaluation of total and corneal wavefront high order aberrations for the detection of Forme Fruste keratoconus. Invest Ophthalmol Vis Sci. 2012;23(6):2978–92.

    Article  Google Scholar 

  43. Skuta GL, Cantor LB, Weiss JS. Refractive surgery. In:American Academy of Ophthalmology Basic and Clinical Sciences Course. San Francisco: American Academy of Ophthalmology; 2011-2012. p. 8.

    Google Scholar 

  44. Holladay JT, Piers PA, Koranyi G, et al. A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J Refract Surg. 2002;18(6):683–91.

    PubMed  Google Scholar 

  45. Bellucci R, Morselli S, Piers P. Comparison of wavefront aberrations and optical quality of eyes implanted with five different intraocular lenses. J Refract Surg. 2004;20(4):297–306.

    PubMed  Google Scholar 

  46. Awwad ST, Warmerdam D, Bowman RW, et al. Contrast sensitivity and higher order aberrations in eyes implanted with AcrySof IQ SN60WF and AcrySof SN60AT intraocular lenses. J Refract Surg. 2008;24(6):619–25.

    PubMed  Google Scholar 

  47. Campbell C. The effect of tear film on higher order corrections applied to the corneal surface during wavefront-guided refractive surgery. J Refract Surg. 2005;21(5):S519–24.

    PubMed  Google Scholar 

  48. Endl MJ, Martinez CE, Klyce SD, et al. Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy. Arch Ophthalmol. 2001;119(8):1159–64.

    Article  CAS  PubMed  Google Scholar 

  49. Goins KM, Wagoner MD. Focal points: imaging the anterior segment. Am Acad Ophthalmol. 2009;27(11):1–17.

    Google Scholar 

  50. Schallhorn SC. Focal points: wavefront-guided LASIK. Am Acad Ophthalmol. 2008;26(1):1–15.

    Google Scholar 

  51. Smolek MK, Klyce SD. Zernike polynomials are inadequate to represent higher order aberrations in the eye. Invest Ophthalmol Vis Sci. 2003;44:4676–81.

    Article  PubMed  Google Scholar 

  52. Ghez AM, Morris M, Becklin EE, et al. The accelerations of stars orbiting the Milky Way’s central black hole. Nature. 2000;407:349–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinjab, M.M., Cummings, A.B. (2018). Introduction to Wavefront Science. In: Sinjab, M., Cummings, A. (eds) Customized Laser Vision Correction. Springer, Cham. https://doi.org/10.1007/978-3-319-72263-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72263-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72262-7

  • Online ISBN: 978-3-319-72263-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics