Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 503 Accesses

Abstract

In this chapter, a critical review of the book is performed. Main findings and contributions of this work are included in Sect. 7.2. Section 7.3 is devoted to the enumeration of limitations of the model and the approach followed in this book, which could affect the validity of the aforementioned findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.D.E.Y. CIENCIA, REAL DECRETO 1393/2007, de 29 de octubre, por el que se establece la ordenación de las enseñanzas universitarias oficiales. Boletín Oficial del Estado 260 (2007), pp. 44037–44048

    Google Scholar 

  2. D. Evans, A. Ward, Minimizing turbocharger whoosh noise for diesel powertrains. SAE Technical Paper. 2005-01-2485 (2005). https://doi.org/10.4271/2005-01-2485

  3. C. Teng, S. Homco, Investigation of compressor whoosh noise in automotive turbochargers. SAE Int. J. Passeng. Cars-Mech. Syst. 2(1) (2009), pp. 1345–1351. https://doi.org/10.4271/2009-01-2053

  4. G. Gaudé, T. Lefèvre, R. Tanna, K. Jin, T. J. B. McKitterick, S. Armenio, Experimental and computational challenges in the quantification of turbocharger vibro-acoustic sources, in Proceedings of the 37th International Congress and Exposition on Noise Control Engineering 2008, vol. 2008. 3. Institute of Noise Control Engineering. 2008, pp. 5598–5611. ISBN: 978-1-60560-989-8

    Google Scholar 

  5. C. Sevginer, M. Arslan, N. Sonmez, S. Yilmaz, Investigation of turbocharger related whoosh and air blow noise in a diesel powertrain, in Proceedings of the 36th International Congress and Exposition on Noise Control Engineering 2007, 2007, pp. 476–485. ISBN: 978-1-60560-385-8

    Google Scholar 

  6. F. Mendonça, O. Baris, G. Capon, Simulation of radial compressor aeroacoustics using CFD, in Proceedings of ASME Turbo Expo 2012. GT2012-70028. ASME. 2012, pp. 1823–1832. https://doi.org/10.1115/GT2012-70028

  7. S.N. Danish, M. Chaochen, Y. Ce, L. Wei, Comparison of two methods to increase the tip clearance and its effect on performance of a turbocharger centrifugal compressor stage, in International Conference on Energy and Environment (2006) p. 7

    Google Scholar 

  8. Y. Jung, M. Choi, S. Oh, J. Baek, Effects of a nonuniform tip clearance profile on the performance and flow field in a centrifugal compressor. Int. J. Rotating Mach. 2012 (2012). https://doi.org/10.1155/2012/340439

  9. G. Després, G.N. Boum, F. Leboeuf, D. Chalet, P. Chesse, A. Lefebvre, Simulation of near surge instabilities onset in a turbocharger compressor. Proc. Inst. Mech. Eng., Part A: J. Power Energy 227(6), 665–673 (2013). https://doi.org/10.1177/0957650913495537

    Article  Google Scholar 

  10. M. Tritthart, D. Gutknecht, Three-dimensional simulation of free-surface flows using polyhedral finite volumes. Eng. Appl. Comput. Fluid Mech. 1, 1–14 (2007)

    Google Scholar 

  11. O. Baris, F. Mendonça, Automotive turbocharger compressor CFD and extension towards incorporating installation effects, in Proceedings of ASME Turbo Expo 2011: Power for Land, Sea and Air. ASME, 2011, pp. 2197–2206. https://doi.org/10.1115/GT2011-46796

  12. I. Tomita, S. Ibaraki, M. Furukawa, K. Yamada, The effect of tip leakage vortex for operating range enhancement of centrifugal compressor. J. Turbomach. 135(5), 8 (2013). https://doi.org/10.1115/1.4007894

    Article  Google Scholar 

  13. R. Lang, Contribución a la Mejora del Margen de Bombeo en Compresores Centrífugos de Sobrealimentación. Ph.D. Thesis. Universitat Politècnica de València, 2011, http://hdl.handle.net/10251/12331

  14. J. Galindo, J.R. Serrano, X. Margot, A. Tiseira, N. Schorn, H. Kindl, Potential of flow pre-whirl at the compressor inlet of automotive engine turbochargers to enlarge surge margin and overcome packaging limitations. Int. J. Heat Fluid Flow 28(3), 374–387 (2007). https://doi.org/10.1016/j.ijheatfluidflow.2006.06.002

    Article  Google Scholar 

  15. J. Galindo, F. Arnau, A. Tiseira, R. Lang, H. Lahjaily, T. Gimenes, Measurement and modeling of compressor surge on engine test bench for different intake line configurations. SAE Technical Paper 2011-01-0370 (2011), https://doi.org/10.4271/2011-01-0370

  16. J.R. Serrano, X. Margot, A. Tiseira, L.M. García-Cuevas, Optimization of the inlet air line of an automotive turbocharger. Int. J. Engine Res. 14(1), 92–104 (2013). https://doi.org/10.1177/1468087412449085

    Article  Google Scholar 

  17. J. Galindo, A. Tiseira, P. Fajardo, R. Navarro, Analysis of the influence of different real flow effects on computational fluid dynamics boundary conditions based on the method of characteristics, in Mathematical and Computer Modelling 57(7–8) (2013). Public Key Services and Infrastructures EUROPKI-2010-Mathematical Modelling in Engineering & Human Behaviour 2011, pp. 1957–1964. ISSN: 0895-7177. https://doi.org/10.1016/j.mcm.2012.01.016

  18. T. Raitor, W. Neise, Sound generation in centrifugal compressors. J. Sound Vib. 314, 738–756 (2008). ISSN: 0022-460X. https://doi.org/10.1016/j.jsv.2008.01.034

  19. J. Galindo, S. Hoyas, P. Fajardo, R. Navarro, Set-up analysis and optimization of CFD simulations for radial turbines. Eng. Appl. Comput. Fluid Mech. 7(4), 441–460 (2013). https://doi.org/10.1080/19942060.2013.11015484

    Google Scholar 

  20. F.-Y. Zhong, Studies on the aeroacoustics of turbomachinery. J. Therm. Sci. 8(1), 9–22 (1999). ISSN: 1003-2169. https://doi.org/10.1007/s11630-999-0019-3

  21. E. Alenius, Flow duct acoustics: an LES approach. Ph.D. Thesis. KTH, MWL Flow acoustics, 2012, pp. viii, 175

    Google Scholar 

  22. A. Sakowitz, M. Mihaescu, L. Fuchs, Flow decomposition methods applied to the flow in an IC engine manifold. Appl. Therm. Eng. 65(1–2), 57–65 (2014). ISSN: 1359-4311. https://doi.org/10.1016/j.applthermaleng.2013.12.082

  23. A. Kalpakli, R. Örlü, P. Alfredsson, Vortical patterns in turbulent flow downstream a 90\(^{\circ }\) curved pipe at high Womersley numbers. Int. J. Heat Fluid Flow 44, 692–699 (2013). https://doi.org/10.1016/j.ijheatfluidflow.2013.09.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Navarro García .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Navarro García, R. (2018). Concluding Remarks. In: Predicting Flow-Induced Acoustics at Near-Stall Conditions in an Automotive Turbocharger Compressor. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-72248-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72248-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72247-4

  • Online ISBN: 978-3-319-72248-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics