Skip to main content

Methodology for Experimental Validation

  • Chapter
  • First Online:
  • 522 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This book is devoted to the CFD analysis of flow-induced acoustics of turbocharger compressors, as described in Chap. 1. Since this topic has not been covered by many researchers, experimental measurements are used to assess the ability of these simulations to capture compressor noise generation. In this way, the turbocharger test rig should be modeled and experimental probes should be replicated in CFD. However, the existence of long ducts in the rig greatly increases the computational effort [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    \(T_{ref} = 288.15\) K and \(P_{ref} = 101\,325\) Pa.

References

  1. J. Galindo, A. Tiseira, P. Fajardo, R. Navarro, Analysis of the influence of different real flow effects on computational fluid dynamics boundary conditions based on the method of characteristics. Math. Comput. Model. 57(7–8), 1957 (2013). https://doi.org/10.1016/j.mcm.2012.01.016. (Public Key Services and Infrastructures EUROPKI-2010-Mathematical Modelling in Engineering & Human Behaviour 2011, pp. 1957–1964. ISSN:0895-7177)

    Article  Google Scholar 

  2. F. Mendonça, O. Baris, G. Capon, Simulation of radial compressor aeroacoustics using CFD, in Proceedings of ASME Turbo Expo 2012. GT2012-70028. ASME. 2012, pp. 1823–1832. https://doi.org/10.1115/GT2012-70028

  3. D. Evans, A. Ward, Minimizing Turbocharger Whoosh Noise for Diesel Powertrains. SAE Technical Paper 2005-01-2485 (2005). https://doi.org/10.4271/2005-01-2485

  4. C. Teng, S. Homco, Investigation of compressor whoosh noise in automotive turbochargers. SAE Int. J. Passeng. Cars-Mech. Syst. 2(1), 1345–1351 (2009). https://doi.org/10.4271/2009-01-2053

    Article  Google Scholar 

  5. C. Sevginer, M. Arslan, N. Sonmez, S. Yilmaz, Investigation of turbocharger related whoosh and air blow noise in a diesel powertrain, in Proceedings of the 36th International Congress and Exposition on Noise Control Engineering, 2007, pp. 476–485. ISBN:978-1-60560-385-8

    Google Scholar 

  6. K.-K. Ha, T.-B. Jeong, S.-H. Kang, H.-J. Kim, K.-M. Won, C.-Y. Park, W.-Y. Jung, K.-S. Cho, Experimental investigation on aeroacoustic characteristics of a centrifugal compressor for the fuel-cell vehicle. J. Mech. Sci. Technol. 27(11), 3287–3297 (2013). https://doi.org/10.1007/s12206-013-0851-y. (ISSN:1738-494X)

    Article  Google Scholar 

  7. G. Liskiewicz, L. Horodko, M. Stickland, W. Kryłłowicz, Identification of phenomena preceding blower surge by means of pressure spectral maps. Exp. Therm. Fluid Sci. 54, 267–278 (2014). https://doi.org/10.1016/j.expthermflusci.2014.01.002

    Article  Google Scholar 

  8. N. Figurella, R. Dehner, A. Selamet, K. Tallio, K. Miazgowicz, R. Wade, Noise at the mid to high flow range of a turbocharger compressor, in 41st International Congress and Exposition on Noise Control Engineering, Vol. 2012, No. 3 (Institute of Noise Control Engineering, 2012), pp. 786–797. ISBN:978-1-62748-560-9, http://www.ingentaconnect.com/content/ince/incecp/2012/00002012/00000003/art00015

  9. Y. Lee, D. Lee, Y. So, D. Chung, Control of Airflow Noise from Diesel Engine Turbocharger. SAE Technical Paper 2011-01-0933 (2011). https://doi.org/10.4271/2011-01-0933

  10. G. Gaudé, T. Lefèvre, R. Tanna, K. Jin, T.J.B. McKitterick, S. Armenio, Experimental and computational challenges in the quantification of turbocharger vibro-acoustic sources, in Proceedings of the 37th International Congress and Exposition on Noise Control Engineering, Vol. 2008, No. 3 (Institute of Noise Control Engineering, 2008), pp. 5598–5611. ISBN:978-1-60560-989-8

    Google Scholar 

  11. H. Tiikoja, H. Rämmal, M. Abom, H. Boden, Investigations of automotive turbocharger acoustics. SAE Int. J. Engines 4(2), 2531–2542 (2011). https://doi.org/10.4271/2011-24-0221

    Article  Google Scholar 

  12. L. Mongeau, D. Thompson, D. Mclaughlin, A method for characterizing aerodynamic sound sources in turbomachines. J. Sound Vib. 181(3), 369–389 (1995). https://doi.org/10.1006/jsvi.1995.0146

    Article  Google Scholar 

  13. T. Raitor, W. Neise, Sound generation in centrifugal compressors. J. Sound Vib. 314, 738–756 (2008). https://doi.org/10.1016/j.jsv.2008.01.034. (ISSN:0022-460X)

    Article  Google Scholar 

  14. G. Piñero, L. Vergara, J. Desantes, A. Broatch, Estimation of velocity fluctuation in internal combustion engine exhaust systems through beamforming techniques. Meas. Sci. Technol. 11(11), 1585–1595 (2000). https://doi.org/10.1088/0957-0233/11/11/307

    Article  Google Scholar 

  15. A.F. Seybert, Two-sensor methods for the measurement of sound intensity and acoustic properties in ducts. J. Acoust. Soc. Am. 83(6), 2233–2239 (1988). https://doi.org/10.1121/1.396352

    Article  Google Scholar 

  16. K. Holland, P. Davies, The measurement of sound power flux in flow ducts. J. Sound Vib. 230(4), 915–932 (2000). https://doi.org/10.1006/jsvi.1999.2656

    Article  Google Scholar 

  17. J. Galindo, J.R. Serrano, C. Guardiola, C. Cervelló, Surge limit definition in a specific test bench for the characterization of automotive turbochargers. Exp. Therm. Fluid Sci. 30(5), 449–462 (2006). https://doi.org/10.1016/j.expthermflusci.2005.06.002

    Article  Google Scholar 

  18. A. Broatch, J. Galindo, R. Navarro, J. García-Tíscar, A. Daglish, R.K. Sharma, Simulations and measurements of automotive turbocharger compressor whoosh noise. Eng. Appl. Comput. Fluid Mech. 9(1), 12 (2015). https://doi.org/10.1080/19942060.2015.1004788

    Google Scholar 

  19. A. Broatch, J. Galindo, R. Navarro, J. García-Tíscar, Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors. Int. J. Heat Fluid Flow 50, 134–144 (2014). https://doi.org/10.1016/j.ijheatfluidflow.2014.06.006

    Article  Google Scholar 

  20. A.J. Torregrosa, A. Broatch, R. Navarro, J. García-Tíscar, Acoustic characterization of automotive turbocompressors. Int. J. Engine Res. 16(1), 31–37 (2015). https://doi.org/10.1177/1468087414562866

    Article  Google Scholar 

  21. A.J. Torregrosa, A. Broatch, X. Margot, J. García-Tíscar, Experimental methodology for turbocompressor in-duct noise evaluation based on beamforming wave decomposition. J. Sound Vib. 376, 60–71 (2016). https://doi.org/10.1016/j.jsv.2016.04.035

    Article  Google Scholar 

  22. J. García-Tíscar, Experiments on Turbocharger Compressor Acoustics. Ph.D. thesis. (Universitat Politècnica de València, 2017), http://hdl.handle.net/10251/79552

  23. J. Galindo, J.R. Serrano, X. Margot, A. Tiseira, N. Schorn, H. Kindl, Potential of flow pre-whirl at the compressor inlet of automotive engine turbochargers to enlarge surge margin and overcome packaging limitations. Int. J. Heat Fluid Flow 28(3), 374–387 (2007). https://doi.org/10.1016/j.ijheatfluidflow.2006.06.002

    Article  Google Scholar 

  24. J. Galindo, F. Arnau, A. Tiseira, R. Lang, H. Lahjaily, T. Gimenes, Measurement and Modeling of Compressor Surge on Engine Test Bench for Different Intake Line Configurations. SAE Technical Paper 2011- 01-0370 (2011). https://doi.org/10.4271/2011-01-0370

  25. J.R. Serrano, X. Margot, A. Tiseira, L.M. García-Cuevas, Optimization of the inlet air line of an automotive turbocharger. Int. J. Engine Res. 14(1), 92–104 (2013). https://doi.org/10.1177/1468087412449085

    Article  Google Scholar 

  26. J. Galindo, H. Climent, C. Guardiola, A. Tiseira, On the effect of pulsating flow on surge margin of small centrifugal compressors for automotive engines. Exp. Therm. Fluid Sci. 33(8), 1163–1171 (2009). https://doi.org/10.1016/j.expthermflusci.2009.07.006

    Article  Google Scholar 

  27. J. Galindo, A. Tiseira, R. Navarro, D. Tarí, C.M. Meano, Effect of the inlet geometry on performance, surge margin and noise emission of an automotive turbocharger compressor. Appl. Therm. Eng. 110, 875–882 (2017). https://doi.org/10.1016/j.applthermaleng.2016.08.099

    Article  Google Scholar 

  28. STAR-CCM+. Release version 9.02.005. CD-adapco (2014), http://www.cd-adapco.com

  29. Detached-eddy simulations past a circular cylinder. Flow Turbul. Combust. 63(1–4), 293–313 (2000)

    Google Scholar 

  30. M.L. Shur, P.R. Spalart, M.K. Strelets, A.K. Travin, A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29(6), 1638–1649 (2008). https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001

    Article  Google Scholar 

  31. J.R. Serrano, P. Olmeda, F. Arnau, M. Reyes-Belmonte, A. Lefebvre, Importance of heat transfer phenomena in small turbochargers for passenger car applications. SAE Int. J. Engines 6(2), 716–728 (2013). https://doi.org/10.4271/2013-01-0576

    Article  Google Scholar 

  32. J.R. Serrano, F.J. Arnau, R. Novella, M. Á. Reyes-Belmonte, A Procedure to Achieve 1D Predictive Modeling of Turbochargers Under Hot and Pulsating Flow Conditions at the Turbine Inlet. SAE Technical Paper 2014-01-1080 (2014), 13pp. https://doi.org/10.4271/2014-01-1080

  33. J.R. Serrano, P. Olmeda, F.J. Arnau, A. Dombrovsky, L. Smith, Methodology to characterize heat transfer phenomena in small automotive turbochargers: experiments and modelling based analysis, in Proceedings of ASME Turbo Expo (2014)

    Google Scholar 

  34. A. Hemidi, F. Henry, S. Leclaire, J.-M. Seynhaeve, Y. Bartosiewicz, CFD analysis of a supersonic air ejector. Part I: experimental validation of single-phase and two-phase operation. Appl. Therm. Eng. 29(8–9), 1523–1531 (2009). https://doi.org/10.1016/j.applthermaleng.2008.07.003. (ISSN:1359-4311)

    Article  Google Scholar 

  35. A. Hemidi, F. Henry, S. Leclaire, J.-M. Seynhaeve, Y. Bartosiewicz, CFD analysis of a supersonic air ejector. Part II: relation between global operation and local flow features. Appl. Therm. Eng. 29(14–15), 2990–2998 (2009). https://doi.org/10.1016/j.applthermaleng.2009.03.019. (ISSN:1359-4311)

    Article  Google Scholar 

  36. M. Ubaldi, P. Zunino, G. Barigozzi, A. Cattanei, An experimental investigation of stator induced unsteadiness on centrifugal impeller outflow. J. Turbomach. 118, 41–51 (1996). https://doi.org/10.1115/1.2836604

    Article  Google Scholar 

  37. F. Hellström, E. Guillou, M. Gancedo, R. DiMicco, A. Mohamed, E. Gutmark, L. Fuchs, Stall Development in a Ported Shroud Compressor Using PIV Measurements and Large Eddy Simulation. Technical report SAE Technical Paper 2010-01-0184 (2010). https://doi.org/10.4271/2010-01-0184

  38. B. Semlitsch, V. JyothishKumar, M. Mihaescu, L. Fuchs, E. Gutmark, M. Gancedo, Numerical Flow Analysis of a Centrifugal Compressor with Ported and Without Ported Shroud. SAE Technical Paper 2014-01-1655 (2014). https://doi.org/10.4271/2014-01-1655

  39. B.W. van Oudheusden, PIV-based pressure measurement. Meas. Sci. Technol. 24(10), 32pp (2013). https://doi.org/10.1088/0957-0233/21/10/105401

  40. M. Choi, N.H. Smith, M. Vahdati, Validation of numerical simulation for rotating stall in a transonic fan. J. Turbomach. 135(2), 8 (2013). https://doi.org/10.1115/1.4006641

  41. P. Welch, The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967)

    Article  Google Scholar 

  42. L.J. Eriksson, Higher order mode effects in circular ducts and expansion chambers. J. Acoust. Soc. Am. 68, 545 (1980). https://doi.org/10.1121/1.384768

    Article  Google Scholar 

  43. A.J. Torregrosa, P. Fajardo, A. Gil, R. Navarro, Development of a non-reflecting boundary condition for application in 3D computational fluid dynamic codes. Eng. Appl. Comput. Fluid Mech. 6(3), 447–460 (2012). https://doi.org/10.1080/19942060.2012.11015434

    Google Scholar 

  44. A.J. Torregrosa, J.R. Serrano, J. Dopazo, S. Soltani, Experiments on Wave Transmission and Reflection by Turbochargers in Engine Operating Conditions. SAE Technical Paper 2006-01-0022 (2006). https://doi.org/10.4271/2006-01-0022

  45. A.J. Torregrosa, J. Galindo, J.R. Serrano, A. Tiseira, A procedure for the unsteady characterization of turbochargers in reciprocating internal combustion engines, in Fluid Machinery and Fluid Mechanics (Springer, Berlin, 2009), pp. 72–79

    Google Scholar 

  46. J.R. Serrano, F.J. Arnau, V. Dolz, A. Tiseira, C. Cervelló, A model of turbocharger radial turbines appropriate to be used in zeroand one-dimensional gas dynamics codes for internal combustion engines modelling. Energy Convers. Manage. 49(12), 3729–3745 (2008). https://doi.org/10.1016/j.enconman.2008.06.031

    Article  Google Scholar 

  47. M. Åbom, H. Bodén, Error analysis of two-microphone measurements in ducts with flow. J. Acoust. Soc. Am. 83(6), 2429–2438 (1988). https://doi.org/10.1121/1.396322

    Article  Google Scholar 

  48. E.P. Trochon, A New Type of Silencers for Turbocharger Noise Control. SAE Technical Paper, vol. 110, (6), pp. 1587–1592 (2001). https://doi.org/10.4271/2001-01-1436

  49. F. Mendonça, A. Read, F. Imada, V. Girardi, Efficient CFD Simulation Process for Aeroacoustic Driven Design. SAE Technical Paper 2010-36-0545 (2010). https://doi.org/10.4271/2010-36-0545

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Navarro García .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Navarro García, R. (2018). Methodology for Experimental Validation. In: Predicting Flow-Induced Acoustics at Near-Stall Conditions in an Automotive Turbocharger Compressor. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-72248-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72248-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72247-4

  • Online ISBN: 978-3-319-72248-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics