Skip to main content

Osteobiology of Aging

  • Chapter
  • First Online:
Fractures in the Elderly

Part of the book series: Aging Medicine ((AGME))

Abstract

The goals of this chapter will be to give a brief overview of bone biology, describe the molecular mechanisms of bone remodeling and pathologic uncoupling, and provide a general survey of the multiple pathways leading to aging bone and osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Srouji S, Livne E. Bone marrow stem cells and biological scaffold for bone repair in aging and disease. Mech Ageing Dev. 2005;126(2):281–7.

    Article  CAS  PubMed  Google Scholar 

  2. Bilezikian JP. Osteoporosis in men. J Clin Endocrinol Metabol. 1999;84(10):3431–4.

    CAS  Google Scholar 

  3. Looker AC, et al. Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res. 1997;12(11):1761–8.

    Article  CAS  PubMed  Google Scholar 

  4. McKee MD, Addison WN, Kaartinen MT. Hierarchies of extracellular matrix and mineral organization in bone of the craniofacial complex and skeleton. Cells Tissues Organs. 2006;181(3–4):176–88.

    Google Scholar 

  5. Jilka RL. Biology of the basic multicellular unit and the pathophysiology of osteoporosis. Med Pediatr Oncol. 2003;41(3):182–5.

    Article  PubMed  Google Scholar 

  6. Marcus RFD, Kelsey J. Osteoporosis. San Diego: Academic; 1996.

    Google Scholar 

  7. Martin RB, Burr DB, Sharkey NA. Skeletal biology. In: Skeletal tissue mechanics New York: Springer Nature; 1998. p. 29–78.

    Google Scholar 

  8. Boyde A. The real response of bone to exercise. J Anat. 2003;203(2):173–89.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dempster DW. Anatomy and functions of the adult skeleton. In: Favus M, editor. Primer on the metabolic bone diseases and disorders of the mineral metabolism. 6th ed. Washington, DC: The American Society for Bone and Mineral Research; 2006. p. 9.

    Google Scholar 

  10. Weiss L. Cell and tissue biology. In: Histology New York: Springer Nature; 1983. p. 1–87.

    Google Scholar 

  11. Silva MJ, Gibson LJ. Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure. Bone. 1997;21(2):191–9.

    Article  CAS  PubMed  Google Scholar 

  12. Parfitt AM, et al. Relations between histologic indices of bone formation: implications for the pathogenesis of spinal osteoporosis. J Bone Miner Res. 1995;10(3):466–73.

    Article  CAS  PubMed  Google Scholar 

  13. Frost HM. Dynamics of bone remodeling. Bone biodynamics. Boston: Little Brown; 1964. p. 315–33.

    Google Scholar 

  14. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21(2):115–37.

    CAS  PubMed  Google Scholar 

  15. Zamberlan N, et al. Evaluation of cortical thickness and bone density by roentgen microdensitometry in growing males and females. Eur J Pediatr. 1996;155(5):377–82.

    Article  CAS  PubMed  Google Scholar 

  16. Lu PW, et al. Volumetric bone mineral density in normal subjects, aged 5–27 years. J Clin Endocrinol Metabol. 1996;81(4):1586–90.

    CAS  Google Scholar 

  17. Seeman E. The structural and biomechanical basis of the gain and loss of bone strength in women and men. Endocrinol Metab Clin N Am. 2003;32(1):25–38.

    Article  CAS  Google Scholar 

  18. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289(5484):1504–8.

    Article  CAS  PubMed  Google Scholar 

  19. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42.

    Article  CAS  PubMed  Google Scholar 

  20. Ichinose Y, et al. Osteoclastogenesis inhibitory factor/osteoprotegerin reduced bone loss induced by mechanical unloading. Calcif Tissue Int. 2004;75(4):338–43.

    Article  CAS  PubMed  Google Scholar 

  21. Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Investig. 2005;115(12):3318–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nuttall ME, et al. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteopenic disorders. J Bone Miner Res. 1998;13(3):371–82.

    Article  CAS  PubMed  Google Scholar 

  23. Canalis E. Skeletal growth factors. In: Osteoporosis. Philadelphia: Lippincott Williams & Wilkins; 2000. p. 391–410.

    Google Scholar 

  24. Ogata T, Noda M. Expression of ID, a negative regulator of helix-loop-helix DNA binding proteins, is down-regulated at confluence and enhanced by dexamethasone in a mouse osteoblastic cell line, MC3T3E1. Biochem Biophys Res Commun. 1991;180(3):1194–9.

    Article  CAS  PubMed  Google Scholar 

  25. Pittenger MF. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  26. Collette NM, et al. Sostdc1 deficiency accelerates fracture healing by promoting the expansion of periosteal mesenchymal stem cells. Bone. 2016;88:20–30.

    Article  CAS  PubMed  Google Scholar 

  27. Xu L, et al. Sox11-modified mesenchymal stem cells (MSCs) accelerate bone fracture healing: Sox11 regulates differentiation and migration of MSCs. FASEB J. 2015;29(4):1143–52.

    Article  CAS  PubMed  Google Scholar 

  28. Lacey DL, et al. Interleukin 4, interferon-gamma, and prostaglandin E impact the osteoclastic cell-forming potential of murine bone marrow macrophages. Endocrinology. 1995;136(6):2367–76.

    Article  CAS  PubMed  Google Scholar 

  29. Horwood NJ, et al. IL-12 alone and in synergy with IL-18 inhibits osteoclast formation in vitro. J Immunol. 2001;166(8):4915–21.

    Article  CAS  PubMed  Google Scholar 

  30. Mirosavljevic D, et al. T-cells mediate an inhibitory effect of interleukin-4 on osteoclastogenesis. J Bone Miner Res. 2003;18(6):984–93.

    Article  CAS  PubMed  Google Scholar 

  31. Gaur T, et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem. 2005;280(39):33132–40.

    Article  CAS  PubMed  Google Scholar 

  32. Lecka-Czernik B, et al. Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARγ2. J Cell Biochem. 1999;74(3):357–71.

    Article  CAS  PubMed  Google Scholar 

  33. Vaughan T, et al. Alleles of RUNX2/CBFA1 gene are associated with differences in bone mineral density and risk of fracture. J Bone Miner Res. 2002;17(8):1527–34.

    Article  CAS  PubMed  Google Scholar 

  34. Lee B, et al. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet. 1997;16(3):307–10.

    Article  CAS  PubMed  Google Scholar 

  35. Nakashima K, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108(1):17–29.

    Article  CAS  PubMed  Google Scholar 

  36. Komori T, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89(5):755–64.

    Article  CAS  PubMed  Google Scholar 

  37. Otto F, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89(5):765–71.

    Article  CAS  PubMed  Google Scholar 

  38. Mundlos S, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 1997;89(5):773–9.

    Article  CAS  PubMed  Google Scholar 

  39. Ducy P, et al. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev. 1999;13(8):1025–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sato M, et al. Transcriptional regulation of osteopontin gene in vivo by PEBP2αA/CBFA1 and ETS1 in the skeletal tissues. Oncogene. 1998;17(12):1517–25.

    Article  CAS  PubMed  Google Scholar 

  41. Zelzer E, et al. Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development. 2002;129(8):1893–904.

    CAS  PubMed  Google Scholar 

  42. Zelzer E, et al. Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mech Dev. 2001;106(1–2):97–106.

    Article  CAS  PubMed  Google Scholar 

  43. Engsig MT, et al. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol. 2000;151(4):879–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rozman C, et al. Age-related variations of fat tissue fraction in normal human bone marrow depend both on size and number of adipocytes: a stereological study. Exp Hematol. 1989;17(1):34–7.

    CAS  PubMed  Google Scholar 

  45. Chawla A, Lazar MA. Peroxisome proliferator and retinoid signaling pathways co-regulate preadipocyte phenotype and survival. Proc Natl Acad Sci. 1994;91(5):1786–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kawaguchi H, et al. Distinct effects of PPARγ insufficiency on bone marrow cells, osteoblasts, and osteoclastic cells. J Bone Miner Metab. 2005;23(4):275–9.

    Article  PubMed  Google Scholar 

  47. Ducy P, et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89(5):747–54.

    Article  CAS  PubMed  Google Scholar 

  48. Lecka-Czernik B. Divergent effects of selective peroxisome proliferator-activated receptor- 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology. 2002;143(6):2376–84.

    Article  CAS  PubMed  Google Scholar 

  49. Ogawa S, et al. Association of bone mineral density with a polymorphism of the peroxisome proliferator-activated receptor γ gene: PPARγ expression in osteoblasts. Biochem Biophys Res Commun. 1999;260(1):122–6.

    Article  CAS  PubMed  Google Scholar 

  50. Ohsumi J. Troglitazone prevents the inhibitory effects of inflammatory cytokines on insulin-induced adipocyte differentiation in 3T3-L1 cells. Endocrinology. 1994;135(5):2279–82.

    Article  CAS  PubMed  Google Scholar 

  51. Ibrahimi A, et al. Evidence for a common mechanism of action for fatty acids and thiazolidinedione antidiabetic agents on gene expression in preadipose cells. Mol Pharmacol. 1994;46(6):1070–6.

    CAS  PubMed  Google Scholar 

  52. Murphy CE, Rodgers PT. Effects of thiazolidinediones on bone loss and fracture. Ann Pharmacother. 2007;41(12):2014–8.

    Article  CAS  PubMed  Google Scholar 

  53. McDonough AK, et al. The effect of thiazolidinediones on BMD and osteoporosis. Nat Clin Pract Endocrinol Metab. 2008;4(9):507–13.

    Article  CAS  PubMed  Google Scholar 

  54. Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell ... and more. Endocr Rev. 2013;34(5):658–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Burra S, et al. Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels. Proc Natl Acad Sci U S A. 2010;107(31):13648–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mullender MG, Huiskes R. Osteocytes and bone lining cells: which are the best candidates for mechano-sensors in cancellous bone? Bone. 1997;20(6):527–32.

    Article  CAS  PubMed  Google Scholar 

  57. Uitterlinden AG, et al. Polymorphisms in the sclerosteosis/van Buchem disease gene (SOST) region are associated with bone-mineral density in elderly whites. Am J Hum Genet. 2004;75(6):1032–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Winkler DG. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22(23):6267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brunkow ME, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot–containing protein. Am J Hum Genet. 2001;68(3):577–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li X, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280(20):19883–7.

    Article  CAS  PubMed  Google Scholar 

  61. Beighton P. Sclerosteosis. J Med Genet. 1988;25(3):200–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Balemans W, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10(5):537–43.

    Article  CAS  PubMed  Google Scholar 

  63. Loots GG, et al. Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res. 2005;15(7):928–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Balemans W, et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet. 2002;39(2):91–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim SJ, et al. Identification of signal peptide domain SOST mutations in autosomal dominant craniodiaphyseal dysplasia. Hum Genet. 2011;129(5):497–502.

    Article  CAS  PubMed  Google Scholar 

  66. Cosman F, et al. Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med. 2016;375(16):1532–43.

    Article  CAS  PubMed  Google Scholar 

  67. Anderson JJB, Garner SC, editors. Calcium and phosphorus in health and disease. New York: CRCPress. 2005; pages 1–416.

    Google Scholar 

  68. Favus MJ, Goltzman D. Chapter 21. Regulation of calcium and magnesium. In: Primer on the metabolic bone diseases and disorders of mineral metabolism. Somerset, New Jersey: Wiley; 2008. p. 103–8.

    Google Scholar 

  69. Roodman GD. Cell biology of the osteoclast. Exp Hematol. 1999;27(8):1229–41.

    Article  CAS  PubMed  Google Scholar 

  70. Ott SM. Editorial: sclerostin and Wnt signaling—the pathway to bone strength. J Clin Endocrinol Metabol. 2005;90(12):6741–3.

    Article  CAS  Google Scholar 

  71. Troen BR. Molecular mechanisms underlying osteoclast formation and activation. Exp Gerontol. 2003;38(6):605–14.

    Article  CAS  PubMed  Google Scholar 

  72. Stejskal D, et al. Osteoprotegerin, rank, rankl. Biomed Pap. 2001;145(2):61–4.

    Article  CAS  Google Scholar 

  73. Han KO, et al. The changes in circulating osteoprotegerin after hormone therapy in postmenopausal women and their relationship with oestrogen responsiveness on bone. Clin Endocrinol. 2005;62(3):349–53.

    Article  CAS  Google Scholar 

  74. Aubin JE, Bonnelye E. Osteoprotegerin and its ligand: a new paradigm for regulation of osteoclastogenesis and bone resorption. Osteoporos Int. 2000;11(11):905–13.

    Article  CAS  PubMed  Google Scholar 

  75. Zaidi M, et al. Osteoclast function and its control. Exp Physiol. 1993;78(6):721–39.

    Article  CAS  PubMed  Google Scholar 

  76. Holtrop ME, et al. The ultrastructure of osteoclasts in microphthalmic mice. Metab Bone Dis Relat Res. 1981;3(2):123–9.

    Article  CAS  PubMed  Google Scholar 

  77. Delaissé J-M, et al. Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microsc Res Tech. 2003;61(6):504–13.

    Article  PubMed  CAS  Google Scholar 

  78. Glass DA, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8(5):751–64.

    Article  CAS  PubMed  Google Scholar 

  79. Dong XN, Guo XE. Geometric determinants to cement line debonding and osteonal lamellae failure in osteon pushout tests. J Biomech Eng. 2004;126(3):387.

    Article  PubMed  Google Scholar 

  80. Burr DB, Schaffler MB, Frederickson RG. Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J Biomech. 1988;21(11):939–45.

    Article  CAS  PubMed  Google Scholar 

  81. Skedros JG, et al. Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective. Anat Rec A: Discov Mol Cell Evol Biol. 2005;286A(1):781–803.

    Article  Google Scholar 

  82. Reinholt FP, et al. Osteopontin--a possible anchor of osteoclasts to bone. Proc Natl Acad Sci. 1990;87(12):4473–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Diab T, et al. Age-related change in the damage morphology of human cortical bone and its role in bone fragility. Bone. 2006;38(3):427–31.

    Article  PubMed  Google Scholar 

  84. Bonewald LF, Mundy GR. Role of transforming growth factor-beta in bone remodeling. Clin Orthop Relat Res. 1990;(250):261–76.

    Google Scholar 

  85. Locklin R. Effects of TGFβ and BFGF on the differentiation of human bone marrow stromal fibroblasts. Cell Biol Int. 1999;23(3):185–94.

    Article  CAS  PubMed  Google Scholar 

  86. Ueland T. GH/IGF-I and bone resorption in vivo and in vitro. Eur J Endocrinol. 2005;152(3):327–32.

    Article  CAS  PubMed  Google Scholar 

  87. Fox SW, Lovibond AC. Current insights into the role of transforming growth factor-β in bone resorption. Mol Cell Endocrinol. 2005;243(1–2):19–26.

    Article  CAS  PubMed  Google Scholar 

  88. Anderson HC. Matrix vesicles and calcification. Curr Rheumatol Rep. 2003;5(3):222–6.

    Article  PubMed  Google Scholar 

  89. Huiskes R, et al. Nature. 2000;405(6787):704–6.

    Article  CAS  PubMed  Google Scholar 

  90. Chow JWM, et al. Mechanical loading stimulates bone formation by reactivation of bone lining cells in 13-week-old rats. J Bone Miner Res. 1998;13(11):1760–7.

    Article  CAS  PubMed  Google Scholar 

  91. Hauge EM, et al. Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res. 2001;16(9):1575–82.

    Article  CAS  PubMed  Google Scholar 

  92. Garnero P, et al. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res. 1996;11(3):337–49.

    Article  CAS  PubMed  Google Scholar 

  93. Reid IR. Menopause. In: Primer on the metabolic bone diseases and disorders of mineral metabolism. Somerset, New Jersey: Wiley; 2013. p. 165–70.

    Google Scholar 

  94. Kumar R. Vitamin D and calcium transport. Kidney Int. 1991;40(6):1177–89.

    Article  CAS  PubMed  Google Scholar 

  95. Wasserman RH. Phsiological mechanisms of calcium absorption and homeostasis, with emphasis on vitamin D action. In: Bales C, editor. Mineral homeostasis in the elderly. New York: Alan R Liss, INC.; 1989. p. 15.

    Google Scholar 

  96. Brown AJ, Dusso A, Slatopolsky E. Vitamin D. Am J Phys. 1999;277(2 Pt 2):F157–75.

    CAS  Google Scholar 

  97. Reichel H, Koeffler HP, Norman AW. The role of the vitamin D endocrine system in health and disease. N Engl J Med. 1989;320(15):980–91.

    Article  CAS  PubMed  Google Scholar 

  98. Larsen ER, Mosekilde L, Foldspang A. Vitamin D and calcium supplementation prevents osteoporotic fractures in elderly community dwelling residents: a pragmatic population-based 3-year intervention study. J Bone Miner Res. 2003;19(3):370–8.

    Article  PubMed  CAS  Google Scholar 

  99. Hordon LD, Peacock M. Osteomalacia and osteoporosis in femoral neck fracture. Bone Miner. 1990;11(2):247–59.

    Article  CAS  PubMed  Google Scholar 

  100. Mosekilde L. Vitamin D and the elderly. Clin Endocrinol. 2005;62(3):265–81.

    Article  CAS  Google Scholar 

  101. Garnero P, et al. Vitamin D receptor gene polymorphisms are associated with the risk of fractures in postmenopausal women, independently of bone mineral density. J Clin Endocrinol Metabol. 2005;90(8):4829–35.

    Article  CAS  Google Scholar 

  102. Bischoff-Ferrari HA, et al. Effect of vitamin D on falls. JAMA. 2004;291(16):1999.

    Article  CAS  PubMed  Google Scholar 

  103. Sambrook PN, et al. Serum parathyroid hormone predicts time to fall independent of vitamin D status in a frail elderly population. J Clin Endocrinol Metabol. 2004;89(4):1572–6.

    Article  CAS  Google Scholar 

  104. Stein MS, et al. Falls relate to vitamin D and parathyroid hormone in an Australian nursing home and hostel. J Am Geriatr Soc. 1999;47(10):1195–201.

    Article  CAS  PubMed  Google Scholar 

  105. Costa EM, Blau HM, Feldman D. 1,25-dihydroxyvitamin D3 receptors and hormonal responses in cloned human skeletal muscle cells*. Endocrinology. 1986;119(5):2214–20.

    Article  CAS  PubMed  Google Scholar 

  106. Bellido T, Boland R. Effects of 1,25-dihydroxy-vitamin D3 on phosphate accumulation by myoblasts. Horm Metab Res. 1991;23(07):356.

    Article  Google Scholar 

  107. Pfeifer M, et al. Effects of a short-term vitamin D and calcium supplementation on body sway and secondary hyperparathyroidism in elderly women. J Bone Miner Res. 2000;15(6):1113–8.

    Article  CAS  PubMed  Google Scholar 

  108. Avenell A, Gillespie WJ, Gillespie LD, O’Connell DL. Vitamin D and vitamin D analogues for preventing fractures associated with involutional and post-menopausal osteoporosis. [update of Cochrane Database Syst Rev. 2001;(1):CD000227; PMID: 11279685]. Cochrane Database Syst Rev. 2005;000227.

    Google Scholar 

  109. Jackson RD, LaCroix AZ, Gass M, et al. Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med. 2006;354(7):669–83. Erratum in: N Engl J Med. 2006 Mar 9;354(10):1102.

    Article  CAS  PubMed  Google Scholar 

  110. Cummings SR, et al. Endogenous hormones and the risk of hip and vertebral fractures among older women. N Engl J Med. 1998;339(11):733–8.

    Article  CAS  PubMed  Google Scholar 

  111. Bischoff-Ferrari HA, et al. Fracture prevention with vitamin D supplementation. JAMA. 2005;293(18):2257.

    Article  CAS  PubMed  Google Scholar 

  112. Bischoff-Ferrari HA, Orav EJ, Dawson-Hughes B. Effect of cholecalciferol plus calcium on falling in ambulatory older men and women: a 3-year randomized controlled trial. Arch Intern Med. 2006;166(4):424.

    CAS  PubMed  Google Scholar 

  113. Canaff L, Hendy GN. Human calcium-sensing receptor gene. Vitamin D response elements in promoters P1 And P2 confer transcriptional responsiveness to 1,25-dihydroxyvitamin D. J Biol Chem. 2002;277(33):30337–50.

    Article  CAS  PubMed  Google Scholar 

  114. Brown EM. PTH secretion in vivo and in vitro. Regulation by calcium and other secretagogues. Miner Electrolyte Metab. 1982;8(3–4):130–50.

    CAS  PubMed  Google Scholar 

  115. Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev. 2001;81(1):239–97.

    Article  CAS  PubMed  Google Scholar 

  116. Ooms ME, et al. Vitamin D status and sex hormone binding globulin: determinants of bone turnover and bone mineral density in elderly women. J Bone Miner Res. 2009;10(8):1177–84.

    Article  Google Scholar 

  117. Agnusdei D, et al. The effect of age on bone and renal responsiveness to parathyroid hormone infusion in man. J Endocrinol Investig. 1992;15(9 Suppl 6):69–72.

    CAS  Google Scholar 

  118. Riggs BL, Melton LJ 3rd. Clinical review 8: clinical heterogeneity of involutional osteoporosis: implications for preventive therapy. J Clin Endocrinol Metab. 1990;70(5):1229–32.

    Article  CAS  PubMed  Google Scholar 

  119. Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med. 1995;332(5):305–11.

    Article  CAS  PubMed  Google Scholar 

  120. Kimble RB, et al. Simultaneous block of interleukin-1 and tumor necrosis factor is required to completely prevent bone loss in the early postovariectomy period. Endocrinology. 1995;136(7):3054–61.

    Article  CAS  PubMed  Google Scholar 

  121. Hughes DE, et al. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF–β. Nat Med. 1996;2(10):1132–6.

    Article  CAS  PubMed  Google Scholar 

  122. Gao Y, et al. Estrogen prevents bone loss through transforming growth factor signaling in T cells. Proc Natl Acad Sci. 2004;101(47):16618–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Eghbali-Fatourechi G, et al. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Investig. 2003;111(8):1221–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Khosla S, et al. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen1. J Clin Endocrinol Metabol. 1998;83(7):2266–74.

    CAS  Google Scholar 

  125. Van Pottelbergh I, et al. Perturbed sex steroid status in men with idiopathic osteoporosis and their sons. J Clin Endocrinol Metabol. 2004;89(10):4949–53.

    Article  CAS  Google Scholar 

  126. Khosla S. Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab. 2001;86(8):3555–61.

    Article  CAS  PubMed  Google Scholar 

  127. Wejda B, et al. Hip fractures and the thyroid: a case-control study. J Intern Med. 1995;237(3):241–7.

    Article  CAS  PubMed  Google Scholar 

  128. Coindre J-M. Bone loss in hypothyroidism with hormone replacement. Arch Intern Med. 1986;146(1):48.

    Article  CAS  PubMed  Google Scholar 

  129. Britto JM. Osteoblasts mediate thyroid hormone stimulation of osteoclastic bone resorption. Endocrinology. 1994;134(1):169–76.

    Article  CAS  PubMed  Google Scholar 

  130. Stall GM. Accelerated bone loss in hypothyroid patients overtreated with L-thyroxine. Ann Intern Med. 1990;113(4):265.

    Article  CAS  PubMed  Google Scholar 

  131. Faber J, Galloe AM. Changes in bone mass during prolonged subclinical hyperthyroidism due to L-thyroxine treatment: a meta-analysis. Eur J Endocrinol. 1994;130(4):350–6.

    Article  CAS  PubMed  Google Scholar 

  132. Abe E, et al. TSH is a negative regulator of skeletal remodeling. Cell. 2003;115(2):151–62.

    Article  CAS  PubMed  Google Scholar 

  133. Nasu M, et al. Effect of natural menopause on serum levels of IGF-I and IGF-binding proteins: relationship with bone mineral density and lipid metabolism in perimenopausal women. Eur J Endocrinol. 1997;136(6):608–16.

    Article  CAS  PubMed  Google Scholar 

  134. Brixen K, et al. Short-term treatment with growth hormone stimulates osteoblastic and osteoclastic activity in osteopenic postmenopausal women: a dose response study. J Bone Miner Res. 1995;10(12):1865–74.

    Article  CAS  PubMed  Google Scholar 

  135. Friedlander AL. One year of insulin-like growth factor I treatment does not affect bone density, body composition, or psychological measures in postmenopausal women. J Clin Endocrinol Metab. 2001;86(4):1496–503.

    CAS  PubMed  Google Scholar 

  136. Langlois JA. Association between insulin-like growth factor I and bone mineral density in older women and men: the Framingham heart study. J Clin Endocrinol Metab. 1998;83(12):4257–62.

    CAS  PubMed  Google Scholar 

  137. Horowitz M. Cytokines and estrogen in bone: anti-osteoporotic effects. Science. 1993;260(5108):626–7.

    Article  CAS  PubMed  Google Scholar 

  138. Manolagas SC. Role of cytokines in bone resorption. Bone. 1995;17(2):S63–7.

    Article  Google Scholar 

  139. Kitazawa R, et al. Interleukin-1 receptor antagonist and tumor necrosis factor binding protein decrease osteoclast formation and bone resorption in ovariectomized mice. J Clin Investig. 1994;94(6):2397–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ershler WB, Harman SM, Keller ET. Immunologic aspects of osteoporosis. Dev Comp Immunol. 1997;21(6):487–99.

    Article  CAS  PubMed  Google Scholar 

  141. Kudo O, et al. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone. 2003;32(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  142. Takayanagi H, et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature. 2000;408(6812):600–5.

    Article  CAS  PubMed  Google Scholar 

  143. Effros RB. Replicative senescence of CD8 T cells: effect on human ageing. Exp Gerontol. 2004;39(4):517–24.

    Article  CAS  PubMed  Google Scholar 

  144. Pietschmann P, et al. Immune phenotype and intracellular cytokine production of peripheral blood mononuclear cells from postmenopausal patients with osteoporotic fractures. Exp Gerontol. 2001;36(10):1749–59.

    Article  CAS  PubMed  Google Scholar 

  145. Zaidi M, et al. Calcitonin gene-related peptide inhibits osteoclastic bone resorption: a comparative study. Calcif Tissue Int. 1987;40(3):149–54.

    Article  CAS  PubMed  Google Scholar 

  146. Zaidi M, et al. Regulation of extracellular calcium sensing in rat osteoclasts by femtomolar calcitonin concentrations. Am J Phys. 1996;271(3 Pt 2):F637–44.

    CAS  Google Scholar 

  147. Fromigué O, Modrowski D, Marie P. Growth factors and bone formation in osteoporosis: roles for fibroblast growth factor and transforming growth factor beta. Curr Pharm Des. 2004;10(21):2593–603.

    Article  PubMed  Google Scholar 

  148. Iwaniec UT, et al. Bone anabolic effects of subcutaneous treatment with basic fibroblast growth factor alone and in combination with estrogen in osteopenic ovariectomized rats. Bone. 2003;33(3):380–6.

    Article  CAS  PubMed  Google Scholar 

  149. Montero A, et al. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Investig. 2000;105(8):1085–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chen L. A Ser365->Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia. Hum Mol Genet. 2001;10(5):457–65.

    Article  CAS  PubMed  Google Scholar 

  151. Kato H, et al. Decreased mitogenic and osteogenic responsiveness of calvarial osteoblasts isolated from aged rats to basic fibroblast growth factor. Gerontology. 1995;41(1):20–7.

    Article  CAS  PubMed  Google Scholar 

  152. Pfeilschifter J, et al. Mitogenic responsiveness of human bone cells in vitro to hormones and growth factors decreases with age. J Bone Miner Res. 1993;8(6):707–17.

    Article  CAS  PubMed  Google Scholar 

  153. Mayahara H, et al. In vivostimulation of endosteal bone formation by basic fibroblast growth factor in rats. Growth Factors. 1993;9(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  154. Yamaguchi A, Komori T, Suda T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev. 2000;21(4):393–411.

    Article  CAS  PubMed  Google Scholar 

  155. Gazit D, et al. Bone loss (osteopenia) in old male mice results from diminished activity and availability of TGF-β. J Cell Biochem. 1998;70(4):478–88.

    Article  CAS  PubMed  Google Scholar 

  156. Finkelman RD, et al. Ovariectomy selectively reduces the concentration of transforming growth factor beta in rat bone: implications for estrogen deficiency-associated bone loss. Proc Natl Acad Sci. 1992;89(24):12190–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hattner R, Epker BN, Frost HM. Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature. 1965;206(983):489–90.

    Article  CAS  PubMed  Google Scholar 

  158. Martin TJ, Seeman E. Bone remodelling: its local regulation and the emergence of bone fragility. Best Pract Res Clin Endocrinol Metab. 2008;22(5):701–22.

    Article  PubMed  Google Scholar 

  159. Duong LT, et al. Effects of long term treatment with high doses of odanacatib on bone mass, bone strength, and remodeling/modeling in newly ovariectomized monkeys. Bone. 2016;88:113–24.

    Article  CAS  PubMed  Google Scholar 

  160. Ominsky MS, et al. Sustained modeling-based bone formation during adulthood in Cynomolgus monkeys may contribute to continuous BMD gains with Denosumab. J Bone Miner Res. 2015;30(7):1280–9.

    Article  CAS  PubMed  Google Scholar 

  161. Langdahl B, Ferrari S, Dempster DW. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Ther Adv Musculoskelet Dis. 2016;8(6):225–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ominsky MS, et al. Tissue-level mechanisms responsible for the increase in bone formation and bone volume by sclerostin antibody. J Bone Miner Res. 2014;29(6):1424–30.

    Article  CAS  PubMed  Google Scholar 

  163. Kim SW, et al. Sclerostin antibody administration converts bone lining cells into active osteoblasts. J Bone Miner Res. 2017;32(5):892–901.

    Article  CAS  PubMed  Google Scholar 

  164. Kontulainen S, et al. Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls. J Bone Miner Res. 2002;17(12):2281–9.

    Article  PubMed  Google Scholar 

  165. Whyte MP, et al. Bisphosphonate-induced osteopetrosis: novel bone modeling defects, metaphyseal osteopenia, and osteosclerosis fractures after drug exposure ceases. J Bone Miner Res. 2008;23(10):1698–707.

    Article  PubMed  Google Scholar 

  166. Rosen CJ. The epidemiology and pathogenesis of osteoporosis. In Singer F, editor. Diseases of bone and mineral metabolism. 2004. http://www.endotext.org/registration/?_s2member_vars=post..level..0..post..1573..L2NoYXB0ZXIvdGhlLWVwaWRlbWlvbG9neS1hbmQtcGF0aG9nZW5lc2lzLW9mLW9zdGVvcG9yb3Npcy8%3D&_s2member_sig=1503498507-b313b73d450874914bdb895f8d3cf999.

  167. Garnero P, et al. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS prospective study. J Bone Miner Res. 1996;11(10):1531–8.

    Article  CAS  PubMed  Google Scholar 

  168. Garnero P, et al. Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res. 2000;15(8):1526–36.

    Article  CAS  PubMed  Google Scholar 

  169. Riggs BL, et al. Changes in bone mineral density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes. J Clin Investig. 1982;70(4):716–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cummings SR, Nevitt MC, Browner WS, et al. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med. 1995;332:767–73.

    Article  CAS  PubMed  Google Scholar 

  171. Ahlborg HG, et al. Bone loss and bone size after menopause. N Engl J Med. 2003;349(4):327–34.

    Article  PubMed  Google Scholar 

  172. Parfitt AM, et al. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Investig. 1983;72(4):1396–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. McCalden RW, et al. Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure. J Bone Joint Surg. 1993;75(8):1193–205.

    Article  CAS  PubMed  Google Scholar 

  174. Chan GK, Duque G. Age-related bone loss: old bone, new facts. Gerontology. 2002;48(2):62–71.

    Article  PubMed  Google Scholar 

  175. Keshawarz NM, Recker RR. Expansion of the medullary cavity at the expense of cortex in postmenopausal osteoporosis. Metab Bone Dis Relat Res. 1984;5(5):223–8.

    Article  CAS  PubMed  Google Scholar 

  176. Hughes DE, Boyce BF. Apoptosis in bone physiology and disease. Mol Pathol. 1997;50(3):132–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kameda T, et al. Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J Exp Med. 1997;186(4):489–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gohel A. Estrogen prevents glucocorticoid-induced apoptosis in osteoblasts in vivo and in vitro. Endocrinology. 1999;140(11):5339–47.

    Article  CAS  PubMed  Google Scholar 

  179. Tomkinson A, et al. The role of estrogen in the control of rat osteocyte apoptosis. J Bone Miner Res. 1998;13(8):1243–50.

    Article  CAS  PubMed  Google Scholar 

  180. Kasten TP, et al. Potentiation of osteoclast bone-resorption activity by inhibition of nitric oxide synthase. Proc Natl Acad Sci. 1994;91(9):3569–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Das UN. Nitric oxide as the mediator of the antiosteoporotic actions of estrogen, statins, and essential fatty acids. Exp Biol Med (Maywood). 2002;227(2):88–93.

    Article  CAS  Google Scholar 

  182. Cillo JE, et al. Growth factor and cytokine gene expression in mechanically strained human osteoblast-like cells: implications for distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;90(2):147–54.

    Article  PubMed  Google Scholar 

  183. Dick IM, et al. Estrogen and androgen regulation of plasma membrane calcium pump activity in immortalized distal tubule kidney cells. Mol Cell Endocrinol. 2003;212(1–2):11–8.

    Article  CAS  PubMed  Google Scholar 

  184. McKane WR. Mechanism of renal calcium conservation with estrogen replacement therapy in women in early postmenopause--a clinical research center study. J Clin Endocrinol Metab. 1995;80(12):3458–64.

    CAS  PubMed  Google Scholar 

  185. Savine R, Sonksen PH. Is the somatopause an indication for growth hormone replacement? J Endocrinol Investig. 1999;22(5 Suppl):142–9.

    CAS  Google Scholar 

  186. Lombardi G, et al. Somatopause: dismetabolic and bone effects. J Endocrinol Investig. 2005;28(10 Suppl):36–42.

    CAS  Google Scholar 

  187. Savine R, Sönksen P. Growth hormone – hormone replacement for the somatopause? Horm Res Paediatr. 2000;53(3):37–41.

    Article  CAS  Google Scholar 

  188. Anawalt BD, Merriam GR. Neuroendocrine aging in men. Endocrinol Metab Clin N Am. 2001;30(3):647–69.

    Article  CAS  Google Scholar 

  189. Giordano R, et al. Somatopause reflects age-related changes in the neural control of GH/IGF-I axis. J Endocrinol Investig. 2005;28(3 Suppl):94–8.

    CAS  Google Scholar 

  190. Grinspoon SK, et al. Effects of rhIGF-I administration on bone turnover during short-term fasting. J Clin Investig. 1995;96(2):900–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Johansson AG, et al. Effects of growth hormone and insulin-like growth factor I in men with idiopathic osteoporosis. J Clin Endocrinol Metabol. 1996;81(1):44–8.

    CAS  Google Scholar 

  192. Ebeling PR. Short-term effects of recombinant human insulin-like growth factor I on bone turnover in normal women. J Clin Endocrinol Metab. 1993;77(5):1384–7.

    CAS  PubMed  Google Scholar 

  193. Rosen CJ. Growth hormone and aging. Endocrine. 2000;12(2):197–202.

    Article  CAS  PubMed  Google Scholar 

  194. Haren MT, et al. Andropause: a quality-of-life issue in older males. Med Clin N Am. 2006;90(5):1005–23.

    Article  CAS  PubMed  Google Scholar 

  195. Morales A, Heaton JPW, Carson CC. Andropause: a misnomer for a true clinical entity. J Urol. 2000;163:705–12.

    Article  CAS  PubMed  Google Scholar 

  196. Amin S. Association of hypogonadism and estradiol levels with bone mineral density in elderly men from the Framingham study. Ann Intern Med. 2000;133(12):951–63.

    Article  CAS  PubMed  Google Scholar 

  197. Tenover JS. Effects of testosterone supplementation in the aging male. J Clin Endocrinol Metab. 1992;75(4):1092–8.

    CAS  PubMed  Google Scholar 

  198. Snyder PJ. Effect of testosterone treatment on bone mineral density in men over 65 years of age. J Clin Endocrinol Metab. 1999;84(6):1966–72.

    CAS  PubMed  Google Scholar 

  199. Vanderschueren D, et al. Androgens and bone. Endocr Rev. 2004;25(3):389–425.

    Article  CAS  PubMed  Google Scholar 

  200. Nair KS, et al. DHEA in elderly women and DHEA or testosterone in elderly men. N Engl J Med. 2006;355(16):1647–59.

    Article  CAS  PubMed  Google Scholar 

  201. Mallappallil M, et al. Chronic kidney disease in the elderly: evaluation and management. Clin Pract (Lond). 2014;11(5):525–35.

    Article  CAS  Google Scholar 

  202. Excerpts from the united states renal data system 2005 annual data report: atlas of end-stage renal disease in the united states. Am J Kidney Dis. 2006;47:A4.

    Google Scholar 

  203. Levey AS. National Kidney Foundation Practice Guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med. 2003;139(2):137–47.

    Article  PubMed  Google Scholar 

  204. Garg AX, et al. Estimating the prevalence of renal insufficiency in seniors requiring long-term care. Kidney Int. 2004;65(2):649–53.

    Article  PubMed  Google Scholar 

  205. Bardin T. Musculoskeletal manifestations of chronic renal failure. Curr Opin Rheumatol. 2003;15(1):48–54.

    Article  PubMed  Google Scholar 

  206. Leinau L, Perazella MA. Hip fractures in end-stage renal disease patients: incidence, risk factors, and prevention. Semin Dial. 2006;19(1):75–9.

    Article  PubMed  Google Scholar 

  207. Goodman WG, et al. Suppressive effect of calcium on parathyroid hormone release in adynamic renal osteodystrophy and secondary hyperparathyroidism. Kidney Int. 1997;51(5):1590–5.

    Article  CAS  PubMed  Google Scholar 

  208. Hruska KA, Teitelbaum SL. Renal osteodystrophy. N Engl J Med. 1995;333(3):166–74.

    Article  CAS  PubMed  Google Scholar 

  209. Arnaud CD. Hyperparathyroidism and renal failure. Kidney Int. 1973;4(2):89–95.

    Article  CAS  PubMed  Google Scholar 

  210. Foster JD. Update on mineral and bone disorders in chronic kidney disease. Vet Clin North Am Small Anim Pract. 2016;46(6):1131–49.

    Article  PubMed  Google Scholar 

  211. Mehrotra R. Disordered mineral metabolism and vascular calcification in nondialyzed chronic kidney disease patients. J Ren Nutr. 2006;16(2):100–18.

    Article  PubMed  Google Scholar 

  212. Suda T, et al. Modulation of osteoclast differentiation by local factors. Bone. 1995;17(2):S87–91.

    Article  Google Scholar 

  213. Owen TA, et al. Pleiotropic effects of vitamin D on osteoblast gene expression are related to the proliferative and differentiated state of the bone cell phenotype: dependency upon basal levels of gene expression, duration of exposure, and bone matrix competency in normal rat osteoblast cultures*. Endocrinology. 1991;128(3):1496–504.

    Article  CAS  PubMed  Google Scholar 

  214. Fournier A, et al. Renal osteodystrophy in dialysis patients: diagnosis and treatment. Artif Organs. 1998;22(7):530–57.

    Article  CAS  PubMed  Google Scholar 

  215. Coburn JW, Slatopolsky E. Vitamin D, parathyroid hormone and the renal osteopdystrophies. In: Brenner B, Rector FJ, editors. The kidney. 4th ed. Philadelphia: W.B Saunders; 1991. p. 2036.

    Google Scholar 

  216. Yeh L-CC, Tsai AD, Lee JC. Osteogenic protein-1 (OP-1, BMP-7) induces osteoblastic cell differentiation of the pluripotent mesenchymal cell line C2C12. J Cell Biochem. 2002;87(3):292–304.

    Article  CAS  PubMed  Google Scholar 

  217. Krieger NS, Frick KK, Bushinsky DA. Mechanism of acid-induced bone resorption. Curr Opin Nephrol Hypertens. 2004;13(4):423–36.

    Article  CAS  PubMed  Google Scholar 

  218. Frick KK, Bushinsky DA. Metabolic acidosis stimulates RANKL RNA expression in bone through a cyclo-oxygenase-dependent mechanism. J Bone Miner Res. 2003;18(7):1317–25.

    Article  CAS  PubMed  Google Scholar 

  219. Krieger NS, Sessler NE, Bushinsky DA. Acidosis inhibits osteoblastic and stimulates osteoclastic activity in vitro. Am J Phys. 1992;262(3 Pt 2):F442–8.

    CAS  Google Scholar 

  220. Alem AM, et al. Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int. 2000;58(1):396–9.

    Article  CAS  PubMed  Google Scholar 

  221. Krall EA, Dawson-Hughes B. Walking is related to bone density and rates of bone loss. Am J Med. 1994;96(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  222. Chen JS, et al. Effect of age-related chronic immobility on markers of bone turnover. J Bone Miner Res. 2005;21(2):324–31.

    Article  PubMed  CAS  Google Scholar 

  223. Takata S, Yasui N. Disuse osteoporosis. J Med Investig. 2001;48(3–4):147–56.

    CAS  Google Scholar 

  224. Dalsky GP. Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Intern Med. 1988;108(6):824.

    Article  CAS  PubMed  Google Scholar 

  225. Nishimura Y, et al. Bone turnover and calcium metabolism during 20 days bed rest in young healthy males and females. Acta Physiol Scand Suppl. 1994;616:27–35.

    CAS  PubMed  Google Scholar 

  226. Uhthoff HK, Jaworski ZF. Bone loss in response to long-term immobilisation. J Bone Joint Surg Br. 1978;60-B(3):420–9.

    Article  CAS  PubMed  Google Scholar 

  227. Wang B, Zhang S, Wu XY. Effects of microgravity on the gene expression and cellular functions of osteoblasts. Space Med Med Eng (Beijing). 2003;16(3):227–30.

    Google Scholar 

  228. Uebelhart D, et al. Bone metabolism in spinal cord injured individuals and in others who have prolonged immobilisation. A review. Paraplegia. 1995;33(11):669–73.

    CAS  PubMed  Google Scholar 

  229. Bikle DD, Sakata T, Halloran BP. The impact of skeletal unloading on bone formation. Gravit Space Biol Bull. 2003;16(2):45–54.

    PubMed  Google Scholar 

  230. Patience TH. Osteoporosis due to misuse. In: Matkovic V, editor. Physical medicine and rehabilitation clinics of North America:osteoporosis. Philadelphia: W.B. Saunders; 1995. p. 579.

    Google Scholar 

  231. Chantraine A, Heynen G, Franchimont P. Bone metabolism, parathyroid hormone, and calcitonin in paraplegia. Calcif Tissue Int. 1979;27(1):199–204.

    Article  CAS  PubMed  Google Scholar 

  232. Kiratli BJ, et al. Bone mineral and geometric changes through the femur with immobilization due to spinal cord injury. J Rehabil Res Dev. 2000;37(2):225–33.

    CAS  PubMed  Google Scholar 

  233. Weiss D. Osteoporosis and spinal cord injury. 2006. http://emedicine.medscape.com/article/322204-overview.

  234. Dionyssiotis Y. Spinal cord injury-related bone impairment and fractures: an update on epidemiology and physiopathological mechanisms. J Musculoskelet Neuronal Interact. 2011;11(3):257–65.

    CAS  PubMed  Google Scholar 

  235. Culberson JW. Alcohol use in the elderly: beyond the CAGE. Part 1 of 2: prevalence and patterns of problem drinking. Geriatrics. 2006;61(10):23–7.

    PubMed  Google Scholar 

  236. Substance Abuse and Mental Health Services Administration (Office of Applied Studies). Results from the 2001. 2002. National household survey on drug abuse: volume 1. Summary of national findings. Rockville: Department of Health and Human Services.

    Google Scholar 

  237. Moore AA, et al. Drinking habits among older persons: findings from the NHANES I epidemiologic follow-up study (1982–84). J Am Geriatr Soc. 1999;47(4):412–6.

    Article  CAS  PubMed  Google Scholar 

  238. Turner RT. Skeletal response to alcohol. Alcohol Clin Exp Res. 2000;24(11):1693–701.

    Article  CAS  PubMed  Google Scholar 

  239. Sampson HW. Alcohol, osteoporosis, and bone regulating hormones. Alcohol Clin Exp Res. 1997;21(3):400–3.

    Article  CAS  PubMed  Google Scholar 

  240. Cheung RCY, et al. Effects of ethanol on bone cells in vitro resulting in increased resorption. Bone. 1995;16(1):143–7.

    Article  CAS  PubMed  Google Scholar 

  241. Turner RT, et al. Chronic alcohol treatment results in disturbed vitamin D metabolism and skeletal abnormalities in rats. Alcohol Clin Exp Res. 1988;12(1):159–62.

    Article  CAS  PubMed  Google Scholar 

  242. Maurel DB, et al. Low bone accrual is associated with osteocyte apoptosis in alcohol-induced osteopenia. Bone. 2011;49(3):543–52.

    Article  CAS  PubMed  Google Scholar 

  243. Maurel DB, et al. Osteocyte apoptosis and lipid infiltration as mechanisms of alcohol-induced bone loss. Alcohol Alcohol. 2012;47(4):413–22.

    Article  CAS  PubMed  Google Scholar 

  244. Kristensson H, Lundén A, Nilsson BE. Fracture incidence and diagnostic roentgen in alcoholics. Acta Orthop Scand. 1980;51(1–6):205–7.

    Article  CAS  PubMed  Google Scholar 

  245. Turner RT, et al. Effects of parathyroid hormone on bone formation in a rat model for chronic alcohol abuse. Alcohol Clin Exp Res. 2001;25(5):667–71.

    Article  CAS  PubMed  Google Scholar 

  246. Benson BW, Shulman JD. Inclusion of tobacco exposure as a predictive factor for decreased bone mineral content. Nicotine Tob Res. 2005;7(5):719–24.

    Article  CAS  PubMed  Google Scholar 

  247. Blum M, et al. Household tobacco smoke exposure is negatively associated with premenopausal bone mass. Osteoporos Int. 2002;13(8):663–8.

    Article  CAS  PubMed  Google Scholar 

  248. Law MR, Hackshaw AK. A meta-analysis of cigarette smoking, bone mineral density and risk of hip fracture: recognition of a major effect. BMJ. 1997;315(7112):841–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Cooper M. Glucocorticoid activity, inactivity and the osteoblast. J Endocrinol. 1999;163(2):159–64.

    Article  CAS  PubMed  Google Scholar 

  250. Weinstein RS, et al. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Investig. 1998;102(2):274–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Lukert BP. Glucocorticoid-induced osteoporosis: pathogenesis and management. Ann Intern Med. 1990;112(5):352–64.

    Article  CAS  PubMed  Google Scholar 

  252. Canalis E, Avioli L. Effects of deflazacort on aspects of bone formation in cultures of intact calvariae and osteoblast-enriched cells. J Bone Miner Res. 2009;7(9):1085–92.

    Article  Google Scholar 

  253. Sambrook PN. Glucocorticoid-induced osteoporosis. In: Favus M, editor. Primeron the metabolic bone diseases and disorders of mineral metabolism. 6th ed. Washington, DC: ASBMR; 2006. p. 296.

    Google Scholar 

  254. Centrella M, McCarthy TL, Canalis E. Glucocorticoid regulation of transforming growth factor beta 1 activity and binding in osteoblast-enriched cultures from fetal rat bone. Mol Cell Biol. 1991;11(9):4490–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Adler RA, Rosen CJ. Glucocorticoids and osteoporosis. Endocrinol Metab Clin N Am. 1994;23:641–54.

    CAS  Google Scholar 

  256. Hofbauer LC. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology. 1999;140(10):4382–9.

    Article  CAS  PubMed  Google Scholar 

  257. Morris HA, et al. Malabsorption of calcium in corticosteroid-induced osteoporosis. Calcif Tissue Int. 1990;46(5):305–8.

    Article  CAS  PubMed  Google Scholar 

  258. Cosman F, et al. High-dose glucocorticoids in multiple sclerosis patients exert direct effects on the kidney and skeleton. J Bone Miner Res. 2009;9(7):1097–105.

    Article  Google Scholar 

  259. Askari A, Vignos PJ, Moskowitz RW. Steroid myopathy in connective tissue disease. Am J Med. 1976;61(4):485–92.

    Article  CAS  PubMed  Google Scholar 

  260. Reid IR. Determinants of vertebral mineral density in patients receiving long-term glucocorticoid therapy. Arch Intern Med. 1990;150(12):2545–8.

    Article  CAS  PubMed  Google Scholar 

  261. Van Staa TP, et al. Use of oral corticosteroids and risk of fractures. J Bone Miner Res. 2000;15(6):993–1000.

    Article  PubMed  Google Scholar 

  262. Laan RFJM. Low-dose prednisone induces rapid reversible axial bone loss in patients with rheumatoid arthritis. Ann Intern Med. 1993;119(10):963–8.

    Article  CAS  PubMed  Google Scholar 

  263. Israel E, et al. Effects of inhaled glucocorticoids on bone density in premenopausal women. N Engl J Med. 2001;345(13):941–7.

    Article  CAS  PubMed  Google Scholar 

  264. Jackuliak P, Payer J. Osteoporosis, fractures, and diabetes. Int J Endocrinol. 2014;2014:820615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Wild S, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.

    Article  PubMed  Google Scholar 

  266. Schwartz AV, Sellmeyer DE. Diabetes, fracture, and bone fragility. Curr Osteoporos Rep. 2007;5(3):105–11.

    Article  PubMed  Google Scholar 

  267. Blakytny R, Jude E. The molecular biology of chronic wounds and delayed healing in diabetes. Diabet Med. 2006;23(6):594–608.

    Article  CAS  PubMed  Google Scholar 

  268. Blakytny R, Spraul M, Jude EB. Review: the diabetic bone: a cellular and molecular perspective. Int J Low Extrem Wounds. 2011;10(1):16–32.

    Article  PubMed  Google Scholar 

  269. Jiao H, Xiao E, Graves DT. Diabetes and its effect on bone and fracture healing. Curr Osteoporos Rep. 2015;13(5):327–35.

    Article  PubMed  PubMed Central  Google Scholar 

  270. Dandona P, et al. Oxidative damage to DNA in diabetes mellitus. Lancet. 1996;347(8999):444–5.

    Article  CAS  PubMed  Google Scholar 

  271. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Thrailkill K, et al. Loss of insulin receptor in osteoprogenitor cells impairs structural strength of bone. J Diabetes Res. 2014;2014:703589.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  273. Thrailkill KM, et al. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab. 2005;289(5):E735–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Garcia-Hernandez A, et al. High glucose concentrations alter the biomineralization process in human osteoblastic cells. Bone. 2012;50(1):276–88.

    Article  CAS  PubMed  Google Scholar 

  275. Tsentidis C, et al. Increased levels of Dickkopf-1 are indicative of Wnt/beta-catenin downregulation and lower osteoblast signaling in children and adolescents with type 1 diabetes mellitus, contributing to lower bone mineral density. Osteoporos Int. 2017;28(3):945–53.

    Article  CAS  PubMed  Google Scholar 

  276. Hie M, et al. Insulin-dependent diabetes mellitus decreases osteoblastogenesis associated with the inhibition of Wnt signaling through increased expression of Sost and Dkk1 and inhibition of Akt activation. Int J Mol Med. 2011;28(3):455–62.

    CAS  PubMed  Google Scholar 

  277. Hie M, Tsukamoto I. Increased expression of the receptor for activation of NF-kappaB and decreased runt-related transcription factor 2 expression in bone of rats with streptozotocin-induced diabetes. Int J Mol Med. 2010;26(4):611–8.

    CAS  PubMed  Google Scholar 

  278. Fowlkes JL, et al. Runt-related transcription factor 2 (RUNX2) and RUNX2-related osteogenic genes are down-regulated throughout osteogenesis in type 1 diabetes mellitus. Endocrinology. 2008;149(4):1697–704.

    Article  CAS  PubMed  Google Scholar 

  279. Gutierrez-Rojas I, et al. Amylin exerts osteogenic actions with different efficacy depending on the diabetic status. Mol Cell Endocrinol. 2013;365(2):309–15.

    Article  CAS  PubMed  Google Scholar 

  280. Ridderstrale M, Groop L. Genetic dissection of type 2 diabetes. Mol Cell Endocrinol. 2009;297(1–2):10–7.

    Article  PubMed  CAS  Google Scholar 

  281. Osima M, et al. Women with type 2 diabetes mellitus have lower cortical porosity of the proximal femoral shaft using low-resolution CT than nondiabetic women, and increasing glucose is associated with reduced cortical porosity. Bone. 2017;97:252–60.

    Article  CAS  PubMed  Google Scholar 

  282. Heilmeier U, et al. Cortical bone laminar analysis reveals increased midcortical and periosteal porosity in type 2 diabetic postmenopausal women with history of fragility fractures compared to fracture-free diabetics. Osteoporos Int. 2016;27(9):2791–802.

    Article  CAS  PubMed  Google Scholar 

  283. Patsch JM, et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res. 2013;28(2):313–24.

    Article  PubMed  PubMed Central  Google Scholar 

  284. Yamaguchi T. Bone fragility in type 2 diabetes mellitus. World J Orthop. 2010;1(1):3–9.

    Article  PubMed  PubMed Central  Google Scholar 

  285. Furst JR, et al. Advanced glycation endproducts and bone material strength in type 2 diabetes. J Clin Endocrinol Metab. 2016;101(6):2502–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Karim L, Bouxsein ML. Effect of type 2 diabetes-related non-enzymatic glycation on bone biomechanical properties. Bone. 2016;82:21–7.

    Article  CAS  PubMed  Google Scholar 

  287. Diaz-Lopez A, et al. Reduced serum concentrations of carboxylated and undercarboxylated osteocalcin are associated with risk of developing type 2 diabetes mellitus in a high cardiovascular risk population: a nested case-control study. J Clin Endocrinol Metab. 2013;98(11):4524–31.

    Article  CAS  PubMed  Google Scholar 

  288. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25(3):585–621.

    Article  CAS  PubMed  Google Scholar 

  289. de Magalhães JP. From cells to ageing: a review of models and mechanisms of cellular senescence and their impact on human ageing. Exp Cell Res. 2004;300(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  290. Campisi J. Replicative senescence: an old Lives’ tale? Cell. 1996;84(4):497–500.

    Article  CAS  PubMed  Google Scholar 

  291. Rohme D. Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythrocytes in vivo. Proc Natl Acad Sci. 1981;78(8):5009–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Martin GM, Sprague CA, Epstein CJ. Replicative life-span of cultivated human cells. Effects of donor’s age, tissue, and genotype. Lab Investig. 1970;23(1):86–92.

    CAS  PubMed  Google Scholar 

  293. Dimri GP, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci. 1995;92(20):9363–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Coppe JP, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):2853–68.

    Article  CAS  PubMed  Google Scholar 

  295. Coppe JP, et al. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Coppe JP, et al. Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype. J Biol Chem. 2011;286(42):36396–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Sherwood SW, et al. Defining cellular senescence in IMR-90 cells: a flow cytometric analysis. Proc Natl Acad Sci. 1988;85(23):9086–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Stenderup K. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003;33(6):919–26.

    Article  PubMed  Google Scholar 

  299. D'Ippolito G, et al. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res. 1999;14(7):1115–22.

    Article  PubMed  Google Scholar 

  300. Kassem M, et al. Demonstration of cellular aging and senescence in serially passaged long-term cultures of human trabecular osteoblasts. Osteoporos Int. 1997;7(6):514–24.

    Article  CAS  PubMed  Google Scholar 

  301. Oreffo ROC, Bord S, Triffitt JT. Skeletal progenitor cells and ageing human populations. Clin Sci. 1998;94(5):549–55.

    Article  CAS  PubMed  Google Scholar 

  302. Kveiborg M, et al. Treatment with 1,25-dihydroxyvitamin D3 reduces impairment of human osteoblast functions during cellular aging in culture. J Cell Physiol. 2001;186(2):298–306.

    Article  CAS  PubMed  Google Scholar 

  303. Christiansen M, et al. CBFA1 and topoisomerase I mRNA levels decline during cellular aging of human trabecular osteoblasts. J Gerontol Ser A Biol Med Sci. 2000;55(4):B194–200.

    Article  CAS  Google Scholar 

  304. Stenderup K, et al. Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosis. J Bone Miner Res. 2001;16(6):1120–9.

    Article  CAS  PubMed  Google Scholar 

  305. Long MW, et al. Age-related phenotypic alterations in populations of purified human bone precursor cells. J Gerontol Ser A Biol Med Sci. 1999;54(2):B54–62.

    Article  CAS  Google Scholar 

  306. Nishida S, et al. Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. J Bone Miner Metab. 1999;17(3):171–7.

    Article  CAS  PubMed  Google Scholar 

  307. Erdmann J, et al. Age-associated changes in the stimulatory effect of transforming growth factor beta on human osteogenic colony formation. Mech Ageing Dev. 1999;110(1–2):73–85.

    Article  CAS  PubMed  Google Scholar 

  308. Bergman RJ, et al. Age-related changes in osteogenic stem cells in mice. J Bone Miner Res. 2009;11(5):568–77.

    Article  Google Scholar 

  309. Hughes DE, et al. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res. 2009;10(10):1478–87.

    Article  Google Scholar 

  310. Lutton JD, Moonga BS, Dempster DW. Osteoclast demise in the rat: physiological versus degenerative cell death. Exp Physiol. 1996;81(2):251–60.

    Article  CAS  PubMed  Google Scholar 

  311. Jilka RL, et al. Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J Bone Miner Res. 1998;13(5):793–802.

    Article  CAS  PubMed  Google Scholar 

  312. Hill PA, Tumber A, Meikle MC. Multiple extracellular signals promote osteoblast survival and apoptosis. Endocrinology. 1997;138(9):3849–58.

    Article  CAS  PubMed  Google Scholar 

  313. Kitajima I, et al. Ceramide-induced nuclear translocation of NF-κB is a potential mediator of the apoptotic response to TNF-α in murine clonal osteoblasts. Bone. 1996;19(3):263–70.

    Article  CAS  PubMed  Google Scholar 

  314. Jilka RL, et al. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Investig. 1999;104(4):439–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Gonzalez Pardo V, Russo de Boland A. Age-related changes in the response of intestinal cells to 1alpha,25(OH)2-vitamin D3. Ageing Res Rev. 2013;12(1):76–89.

    Article  CAS  PubMed  Google Scholar 

  316. Yang N, Hu M. The limitations and validities of senescence associated-β-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp Gerontol. 2005;40(10):813–9.

    Article  CAS  PubMed  Google Scholar 

  317. Cristofalo V. SA β Gal staining: biomarker or delusion. Exp Gerontol. 2005;40(10):836–8.

    Article  CAS  PubMed  Google Scholar 

  318. Farr JN, et al. Identification of senescent cells in the bone microenvironment. J Bone Miner Res. 2016;31(11):1920–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Pignolo RJ, Kaplan F. Interventional spine: an algorithmic approach. In: Slipman CW, Derby R, Simeone FA, Mayer TG, editors. Bone biology. Philadelphia: Elsevier; 2008. in press.

    Google Scholar 

  320. Chiu CP, Harley CB. Replicative senescence and cell immortality: the role of telomeres and telomerase. Exp Biol Med. 1997;214(2):99–106.

    Article  CAS  Google Scholar 

  321. Bekaert S, et al. Telomere length versus hormonal and bone mineral status in healthy elderly men. Mech Ageing Dev. 2005;126(10):1115–22.

    Article  CAS  PubMed  Google Scholar 

  322. Cristofalo VJ, et al. Replicative senescence: a critical review. Mech Ageing Dev. 2004;125(10–11):827–48.

    Article  CAS  PubMed  Google Scholar 

  323. Du X, et al. Telomere shortening exposes functions for the mouse Werner and Bloom syndrome genes. Mol Cell Biol. 2004;24(19):8437–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Marrone A, Walne A, Dokal I. Dyskeratosis congenita: telomerase, telomeres and anticipation. Curr Opin Genet Dev. 2005;15(3):249–57.

    Article  CAS  PubMed  Google Scholar 

  325. Yudoh K, et al. Reconstituting telomerase activity using the telomerase catalytic subunit prevents the telomere shorting and replicative senescence in human osteoblasts. J Bone Miner Res. 2001;16(8):1453–64.

    Article  CAS  PubMed  Google Scholar 

  326. Bodnar AG. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279(5349):349–52.

    Article  CAS  PubMed  Google Scholar 

  327. Cawthon RM, et al. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 2003;361(9355):393–5.

    Article  CAS  PubMed  Google Scholar 

  328. Flores I. Effects of telomerase and telomere length on epidermal stem cell behavior. Science. 2005;309(5738):1253–6.

    Article  CAS  PubMed  Google Scholar 

  329. Franceschi C, et al. Long telomeres and well preserved proliferative vigor in cells from centenarians: a contribution to longevity? Aging (Milano). 1999;11(2):69–72.

    CAS  Google Scholar 

  330. Mondello C, et al. Telomere length in fibroblasts and blood cells from healthy centenarians. Exp Cell Res. 1999;248(1):234–42.

    Article  CAS  PubMed  Google Scholar 

  331. Brennan TA, et al. Mouse models of telomere dysfunction phenocopy skeletal changes found in human age-related osteoporosis. Dis Model Mech. 2014;7(5):583–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Simonsen JL, et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol. 2002;20(6):592–6.

    Article  CAS  PubMed  Google Scholar 

  333. Shi S, et al. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat Biotechnol. 2002;20(6):587–91.

    Article  CAS  PubMed  Google Scholar 

  334. Saeed H, et al. Telomerase-deficient mice exhibit bone loss owing to defects in osteoblasts and increased osteoclastogenesis by inflammatory microenvironment. J Bone Miner Res. 2011;26(7):1494–505.

    Article  CAS  PubMed  Google Scholar 

  335. Gronthos S, et al. Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin. J Bone Miner Res. 2003;18(4):716–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Pignolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandra, A., Rosenzweig, A., Pignolo, R.J. (2018). Osteobiology of Aging. In: Pignolo, R., Ahn, J. (eds) Fractures in the Elderly. Aging Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-72228-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72228-3_1

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-72226-9

  • Online ISBN: 978-3-319-72228-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics